Dimensional Compactification and Two-Particle Binding

被引:3
|
作者
Delfino, A. [1 ]
Timoteo, V. S. [2 ]
Frederico, T. [3 ]
Tomio, Lauro [4 ]
Cordeiro, C. E. [1 ]
机构
[1] Univ Fed Fluminense, Inst Fis, BR-24210900 Niteroi, RJ, Brazil
[2] Univ Estadual Campinas UNICAMP, Fac Tecnol, BR-13484332 Sao Paulo, Brazil
[3] CTA, Inst Tecnol Aeronaut, Dept Fis, BR-12228900 Sao Jose Dos Campos, Brazil
[4] UNESP Univ Estadual Paulista, Inst Fis Teor, BR-01140070 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
few body; renormalization; dimensional compactification; bound states; atoms; BOSE-EINSTEIN CONDENSATION; WALLED CARBON NANOTUBES; FEW-BODY SYSTEMS; BOUND-STATES; FIELD-THEORY; EFIMOV STATES; RENORMALIZATION-GROUP; SCATTERING LENGTH; HALO NUCLEI; 3-NUCLEON;
D O I
10.1002/qua.22625
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The renormalization group equations (RGE) are applied to the study of two-body singular interactions at the surface of an infinite long cylinder with a radius R. A single scale, independent of R, emerges from the renormalization procedure of removing the ultraviolet momentum divergence of the original interacting Green's function. This single scale implies in a R-dependent binding energy, which is obtained from the pole of the Green's function. The binding is infinitely large in the limit R = 0, while as R goes to infinity it converges to the well-known two-dimensional (2D) result in flat space. The physical scale is controlled by the energy binding value on the 2D flat surface. By exploring the effect of space dimensions D, from D = 1 to D = 3, in the physics and scales, it is also shown that by decreasing the dimensionality one favors the two-body binding. (C) 2010 Wiley Periodicals, Inc. Int J Quantum Chem 111: 1458-1465, 2011
引用
收藏
页码:1458 / 1465
页数:8
相关论文
共 50 条
  • [1] Two-particle bound states on a lattice
    Kornilovitch, Pavel E.
    ANNALS OF PHYSICS, 2024, 460
  • [2] On eigenvalues and virtual levels of a two-particle Hamiltonian on a d-dimensional lattice
    Muminov, Mukhiddin I.
    Khurramov, Abdimajid M.
    Bozorov, Islom N.
    NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2023, 14 (03): : 295 - 303
  • [3] Spectral properties of a two-particle Hamiltonian on a lattice
    Muminov, M. E.
    Khurramov, A. M.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2013, 177 (03) : 1693 - 1705
  • [4] Localized two-particle states in deformed nanolayers
    Popov, S., I
    Gavrilov, M., I
    Popov, I. Yu
    2012 PROCEEDINGS OF THE INTERNATIONAL CONFERENCE DAYS ON DIFFRACTION (DD), 2012, : 203 - 206
  • [5] N-Body Efimov States from Two-Particle Noise
    Nicholson, Amy N.
    PHYSICAL REVIEW LETTERS, 2012, 109 (07)
  • [6] Two-Particle Lattice Green Functions on a Two-Dimensional Rectangular Lattice with Next-Nearest Neighbor Hopping
    Bak, M.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2012, 51 (04) : 1173 - 1186
  • [7] ON DISCRETE SPECTRUM OF ONE TWO-PARTICLE LATTICE HAMILTONIAN
    Eshkabilov, Yu Kh
    Kulturaev, D. J.
    UFA MATHEMATICAL JOURNAL, 2022, 14 (02): : 97 - 107
  • [8] Monotonicity of the eigenvalues of the two-particle Schrodinger operatoron a lattice
    Abdullaev, J., I
    Khalkhuzhaev, A. M.
    Usmonov, L. S.
    NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2021, 12 (06): : 657 - 663
  • [9] Bound states in the one-dimensional two-particle Hubbard model with an impurity
    Zhang, J. M.
    Braak, Daniel
    Kollar, Marcus
    PHYSICAL REVIEW A, 2013, 87 (02):
  • [10] Thermodynamic Stability at the Two-Particle Level
    Kowalski, A.
    Reitner, M.
    Del Re, L.
    Chatzieleftheriou, M.
    Amaricci, A.
    Toschi, A.
    de 'Medici, L.
    Sangiovanni, G.
    Schaefer, T.
    PHYSICAL REVIEW LETTERS, 2024, 133 (06)