Leibniz representations of Lie algebras

被引:39
作者
Loday, JL
Pirashvili, T
机构
[1] CNRS, F-67084 STRASBOURG, FRANCE
[2] INST MATH, TBILISI 380093, GEORGIA
关键词
D O I
10.1006/jabr.1996.0127
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Leibniz representation of the Lie algebra g is a vector space M equipped with two actions (left and right) [-, -]: g x M --> M and [-, -]: M x g --> M which satisfy the relations [x,[y,z]] = [[x,y],z] - [[x,z],y], when one of the variables is in M and the two others are in g. In this paper we show that the category L(g) of finite dimensional Leibniz representations of a finite dimensional semi-simple Lie algebra is not semi-simple, but that L(g) has global dimension 2. We give an explicit description of the extensions of simple objects and we obtain the description of the quiver of L(g) (in the sense of Gabriel). It turns out that L(g) is tame only for g = Sl(2). We give the complete list of indecomposable objects in that case. (C) 1996 Academic Press. Inc.
引用
收藏
页码:414 / 425
页数:12
相关论文
共 9 条
[1]  
Bourbaki N., 1975, Groupes et Algebres de Lie, VII, VIII
[2]  
ERDMANN K, 1990, SPRINGER LECTURES MA, V1428
[3]   CORRECTION [J].
GABRIEL, P .
MANUSCRIPTA MATHEMATICA, 1972, 6 (03) :309-&
[4]  
Loday J. -L., 1992, GRUNDL MATH WISS BD, V301
[5]  
Loday J. -L., 1993, Enseign. Math, V39, P269
[6]   UNIVERSAL ENVELOPING-ALGEBRAS OF LEIBNIZ ALGEBRAS AND (CO)HOMOLOGY [J].
LODAY, JL ;
PIRASHVILI, T .
MATHEMATISCHE ANNALEN, 1993, 296 (01) :139-158
[7]  
Mart inez-Villa, 1980, SPRINGER LECT NOTES, V832, P396
[8]  
NTOLO P, 1994, CR ACAD SCI I-MATH, V318, P707
[9]   ON LEIBNIZ HOMOLOGY [J].
PIRASHVILI, T .
ANNALES DE L INSTITUT FOURIER, 1994, 44 (02) :401-411