Fractional (space-time) Fokker-Planck equation

被引:24
作者
El-Wakil, SA [1 ]
Elhanbaly, A [1 ]
Zahran, MA [1 ]
机构
[1] Mansoura Univ, Fac Sci, Dept Phys, Theoret Res Grp, Mansoura, Egypt
关键词
D O I
10.1016/S0960-0779(99)00203-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By using Kramers-Moyal forward expansion and the definition of characteristic function (CF) with some consideration related to derivatives of fractional order, one can obtain the fractional space-time Fokker-Planck equation (FFPE) partial derivative (beta)p(x, t)/partial derivativet(beta) = (-i)(7) D(x)(7)sigma (x, t)p(x, t), 0 < <beta> less than or equal to 1, 0 < <gamma> less than or equal to 2. The obtained equation could he related to a dynamical system subject to fractional Brownian motion. Therefore, the solution of FFPE will be established on three different cases that correspond to different physical situations related to the mean-square displacement, [(x(t + tau) - x(t))(2)] similar to sigma (x, t)tau (beta). (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1035 / 1040
页数:6
相关论文
共 21 条
  • [1] [Anonymous], 1974, FRACTIONAL CALCULUS
  • [2] Fractional Fokker-Planck equation
    El-Wakil, SA
    Zahran, MA
    [J]. CHAOS SOLITONS & FRACTALS, 2000, 11 (05) : 791 - 798
  • [3] ENGLEMAN R, 1986, FRAGMENTATION FORM F
  • [4] Feder J., 1988, FRACTALS
  • [5] Gnedenko B. V., 1954, ADDISON WESLEY MATH
  • [6] Gradshteyn I. S., 1980, TABLE INTEGRALS SERI
  • [7] GUYON E, 1993, INSTABILITIES NONEQU, V4
  • [8] HAVLIN S, 1985, J PHYS A-MATH GEN, V18, P1043
  • [9] DIFFUSION IN DISORDERED MEDIA
    HAVLIN, S
    BENAVRAHAM, D
    [J]. ADVANCES IN PHYSICS, 1987, 36 (06) : 695 - 798
  • [10] KLAFTER J, 1991, J PHYS A, V25