On a Property of the Franklin System in C[0,1] and L1[0,1]

被引:0
作者
Mikayelyan, V. G. [1 ]
机构
[1] Yerevan State Univ, Yerevan 375025, Armenia
关键词
Franklin system; bounded completeness; monotonically bounded completeness;
D O I
10.1134/S0001434620010289
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A problem posed by J. R. Holub is solved. In particular, it is proved that if {(f) over tilde (n)} is the normalized Franklin system in L-1[0, 1], {a(n)} is a monotone sequence converging to zero, and supn is an element of N parallel to Sigma(n)(k=0) a(k)(f) over tildek parallel to|(1)<+infinity, then the series n-ary sumation Sigma(infinity)(n=0)a(n)(f) over tilde (n) converges in L-1[0, 1]. A similar result is also obtained for C[0, 1].
引用
收藏
页码:284 / 287
页数:4
相关论文
共 12 条
[1]  
Bochkarev S V, 1974, MAT SBORNIK, V95137, P3
[2]  
BOCHKAREV SV, 1974, MATH USSR SB, V24, P1
[3]  
Bockarev S. V., 1975, Anal. Math, V1, P249, DOI [10.1007/bf02333175, DOI 10.1007/BF02333175, 10.1007/BF02333175]
[4]   PROPERTIES OF ORTHONORMAL FRANKLIN SYSTEM .2. [J].
CIESIELSKI, Z .
STUDIA MATHEMATICA, 1966, 27 (03) :289-+
[5]  
Day M. M., 1962, Normed Linear Spaces
[6]   A set of continuous orthogonal functions [J].
Franklin, P .
MATHEMATISCHE ANNALEN, 1928, 100 :522-529
[7]  
Gevorkyan G.G., 1990, Anal. Math, V16, P87, DOI 10.1007/BF01907538
[8]  
Gevorkyan G G, 1985, MAT ZAMETKI, V38, P523
[9]   UNBOUNDEDNESS OF THE SHIFT OPERATOR WITH RESPECT TO THE FRANKLIN SYSTEM IN THE SPACE-L1 [J].
GEVORKYAN, GG .
MATHEMATICAL NOTES, 1985, 38 (3-4) :796-802
[10]  
Holub J.R., 1986, GLASGOW MATH J, V28, P15