Autonomous Vehicular Landings on the Deck of an Unmanned Surface Vehicle using Deep Reinforcement Learning

被引:31
|
作者
Polvara, Riccardo [1 ]
Sharma, Sanjay [2 ]
Wan, Jian [2 ]
Manning, Andrew [2 ]
Sutton, Robert [2 ]
机构
[1] Univ Lincoln, Coll Sci, Lincoln Ctr Autonomous Syst Res, Sch Comp Sci, Lincoln LN6 7TS, England
[2] Univ Plymouth, Fac Sci & Engn, Sch Engn, Autonomous Marine Syst Res Grp, Plymouth PL4 8AA, Devon, England
关键词
Deep reinforcement learning; Unmanned aerial vehicle; Autonomous agents; MOVING PLATFORM; NEURAL-NETWORKS; NAVIGATION; SEARCH;
D O I
10.1017/S0263574719000316
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Autonomous landing on the deck of a boat or an unmanned surface vehicle (USV) is the minimum requirement for increasing the autonomy of water monitoring missions. This paper introduces an end-to-end control technique based on deep reinforcement learning for landing an unmanned aerial vehicle on a visual marker located on the deck of a USV. The solution proposed consists of a hierarchy of Deep Q-Networks (DQNs) used as high-level navigation policies that address the two phases of the flight: the marker detection and the descending manoeuvre. Few technical improvements have been proposed to stabilize the learning process, such as the combination of vanilla and double DQNs, and a partitioned buffer replay. Simulated studies proved the robustness of the proposed algorithm against different perturbations acting on the marine vessel. The performances obtained are comparable with a state-of-the-art method based on template matching.
引用
收藏
页码:1867 / 1882
页数:16
相关论文
共 50 条
  • [11] Autonomous Unmanned Aerial Vehicle navigation using Reinforcement Learning: A systematic review
    AlMahamid, Fadi
    Grolinger, Katarina
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 115
  • [12] Towards Using Reinforcement Learning for Autonomous Docking of Unmanned Surface Vehicles
    Holen, Martin
    Ruud, Else-Line Malene
    Warakagoda, Narada Dilp
    Goodwin, Morten
    Engelstad, Paal
    Knausgard, Kristian Muri
    ENGINEERING APPLICATIONS OF NEURAL NETWORKS, EAAAI/EANN 2022, 2022, 1600 : 461 - 474
  • [13] Controlling an Autonomous Vehicle with Deep Reinforcement Learning
    Folkers, Andreas
    Rick, Matthias
    Bueskens, Christof
    2019 30TH IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV19), 2019, : 2025 - 2031
  • [14] Taming an Autonomous Surface Vehicle for Path Following and Collision Avoidance Using Deep Reinforcement Learning
    Meyer, Eivind
    Robinson, Haakon
    Rasheed, Adil
    San, Omer
    IEEE ACCESS, 2020, 8 : 41466 - 41481
  • [15] Vision-Based Deep Reinforcement Learning of Unmanned Aerial Vehicle (UAV) Autonomous Navigation Using Privileged Information
    Wang, Junqiao
    Yu, Zhongliang
    Zhou, Dong
    Shi, Jiaqi
    Deng, Runran
    DRONES, 2024, 8 (12)
  • [16] The Effects of Rewards on Autonomous Unmanned Aerial Vehicle (UAV) Operations Using Reinforcement Learning
    Virani, Hemali
    Liu, Dahai
    Vincenzi, Dennis
    UNMANNED SYSTEMS, 2021, 9 (04) : 349 - 360
  • [17] Deep reinforcement learning-based controller for path following of an unmanned surface vehicle
    Woo, Joohyun
    Yu, Chanwoo
    Kim, Nakwan
    OCEAN ENGINEERING, 2019, 183 : 155 - 166
  • [18] Research on Collision Avoidance Algorithm of Unmanned Surface Vehicle Based on Deep Reinforcement Learning
    Xia, Jiawei
    Zhu, Xufang
    Liu, Zhikun
    Luo, Yasong
    Wu, Zhaodong
    Wu, Qiuhan
    IEEE SENSORS JOURNAL, 2023, 23 (11) : 11262 - 11273
  • [19] Path Planning for Underactuated Unmanned Surface Vehicle Swarm Based on Deep Reinforcement Learning
    Hou, Yuli
    Wang, Ning
    Qiu, Chidong
    PROCEEDINGS OF THE 36TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC 2024, 2024, : 409 - 414
  • [20] Deep reinforcement learning-based controller for dynamic positioning of an unmanned surface vehicle
    Yuan, Wei
    Rui, Xingwen
    COMPUTERS & ELECTRICAL ENGINEERING, 2023, 110