Structural stability of generalized Forchheimer equations for compressible fluids in porous media

被引:37
|
作者
Hoang, Luan [1 ]
Ibragimov, Akif [1 ]
机构
[1] Texas Tech Univ, Dept Math & Stat, Lubbock, TX 79409 USA
基金
美国国家科学基金会;
关键词
CONTINUOUS DEPENDENCE; BRINKMAN; FLOW; CONVERGENCE; DERIVATION; MODELS;
D O I
10.1088/0951-7715/24/1/001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the generalized Forchheimer equations for slightly compressible fluids in porous media. The structural stability is established with respect to either the boundary data or the coefficients of the Forchheimer polynomials. A weighted Poincare-Sobolev inequality related to the nonlinearity of the equation is used to study the asymptotic behaviour of the solutions. Moreover, we prove a perturbed monotonicity property of the vector field associated with the resulting non-Darcy equation, where the correction is explicit and Lipschitz continuous in the coefficients of the Forchheimer polynomials.
引用
收藏
页码:1 / 41
页数:41
相关论文
共 50 条
  • [31] The stability of poro-elastic wave equations in saturated porous media
    Xiong, Fansheng
    Sun, Weitao
    Liu, Jiawei
    ACTA GEOPHYSICA, 2021, 69 (01) : 65 - 75
  • [32] An analytical solution of compressible charged porous media
    Malakpoor, K.
    Huyghe, J. M.
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2009, 89 (09): : 742 - 753
  • [33] Linear analysis on the stability of miscible dispersion of shear-thinning fluids in porous media
    Kim, Min Chan
    Choi, Chang Kyun
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2011, 166 (21-22) : 1211 - 1220
  • [34] A Coupled Darcy-Forchheimer Flow Model in Fractured Porous Media
    Xiong, Feng
    Jiang, Yijun
    Zhu, Chun
    Teng, Lin
    Cheng, Hao
    Wang, Yajun
    APPLIED SCIENCES-BASEL, 2023, 13 (01):
  • [35] Structural Stability in Local Thermal Non-equilibrium Porous Media
    F. Passarella
    B. Straughan
    V. Zampoli
    Acta Applicandae Mathematicae, 2015, 136 : 43 - 53
  • [36] Anisotropic flows of Forchheimer-type in porous media and their steady states
    Hoang, Luan
    Kieu, Thinh
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2025, 84
  • [37] Anomalous imbibition of non-Newtonian fluids in porous media
    Yang, Xu
    Liang, Yingjie
    Chen, Wen
    CHEMICAL ENGINEERING SCIENCE, 2020, 211
  • [38] Barycentric Rational Collocation Method for the Incompressible Forchheimer Flow in Porous Media
    Zhao, Qingli
    Cheng, Yongling
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [39] Navier-Stokes/Forchheimer models for filtration through porous media
    Cimolin, F.
    Discacciati, M.
    APPLIED NUMERICAL MATHEMATICS, 2013, 72 : 205 - 224
  • [40] Wave Equations of Porous Media Saturated With Two Immiscible Fluids Based on the Volume Averaging Method
    Xiong, Fansheng
    Liu, Jiawei
    Guo, Zhenwei
    Liu, Jianxin
    FRONTIERS IN EARTH SCIENCE, 2021, 9