Structural stability of generalized Forchheimer equations for compressible fluids in porous media

被引:37
|
作者
Hoang, Luan [1 ]
Ibragimov, Akif [1 ]
机构
[1] Texas Tech Univ, Dept Math & Stat, Lubbock, TX 79409 USA
基金
美国国家科学基金会;
关键词
CONTINUOUS DEPENDENCE; BRINKMAN; FLOW; CONVERGENCE; DERIVATION; MODELS;
D O I
10.1088/0951-7715/24/1/001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the generalized Forchheimer equations for slightly compressible fluids in porous media. The structural stability is established with respect to either the boundary data or the coefficients of the Forchheimer polynomials. A weighted Poincare-Sobolev inequality related to the nonlinearity of the equation is used to study the asymptotic behaviour of the solutions. Moreover, we prove a perturbed monotonicity property of the vector field associated with the resulting non-Darcy equation, where the correction is explicit and Lipschitz continuous in the coefficients of the Forchheimer polynomials.
引用
收藏
页码:1 / 41
页数:41
相关论文
共 50 条
  • [21] Structural stability for Forchheimer fluid in a semi-infinite pipe
    Li, Zhiqing
    Zhang, Wenbin
    Li, Yuanfei
    ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (03): : 1466 - 1484
  • [22] Foam Stability Influenced by Displaced Fluids and by Pore Size of Porous Media
    Shojaei, Mohammad Javad
    Osei-Bonsu, Kofi
    Richman, Simon
    Grassia, Paul
    Shokri, Nima
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (02) : 1068 - 1074
  • [23] Gromov-Hausdorff stability of global attractors for 3D Brinkman-Forchheimer equations
    Ai, Chengfei
    Tan, Zhong
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (17) : 11117 - 11133
  • [24] Asymptotic Stability of Steady Compressible Fluids Preface
    Padula, Mariarosaria
    ASYMPTOTIC STABILITY OF STEADY COMPRESSIBLE FLUIDS, 2011, 2024 : VII - +
  • [25] WEAK SOLUTIONS TO THE EQUATIONS OF STATIONARY MAGNETOHYDRODYNAMIC FLOWS IN POROUS MEDIA
    Amirat, Youcef
    Chupin, Laurent
    Touzani, Rachid
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (06) : 2445 - 2464
  • [26] Porous Media Flow Transitioning into the Forchheimer Regime: a PIV Study
    Arthur, J. K.
    JOURNAL OF APPLIED FLUID MECHANICS, 2018, 11 (02) : 297 - 307
  • [27] STABILITY BEHAVIOR OF THREE NON-NEWTONIAN MAGNETIC FLUIDS IN POROUS MEDIA
    Zakaria, Kadry
    Sirwah, Magdy A.
    Alkharashi, Sameh A.
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2011, 9 (03) : 767 - 796
  • [28] Brinkman-Forchheimer modeling for porous media thermoacoustic system
    Tasnim, Syeda Humaira
    Mahmud, Shohel
    Fraser, Roydon Andrew
    Pop, Ioan
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2011, 54 (17-18) : 3811 - 3821
  • [29] A Two-Grid Block-Centered Finite Difference Algorithm for Nonlinear Compressible Darcy-Forchheimer Model in Porous Media
    Liu, Wei
    Cui, Jintao
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 74 (03) : 1786 - 1815
  • [30] Weak solutions to the equations of motion for compressible magnetic fluids
    Amirat, Youcef
    Hamdache, Kamel
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2009, 91 (05): : 433 - 467