AI-based shear capacity of FRP-reinforced concrete deep beams without stirrups

被引:21
作者
AlHamaydeh, Mohammad [1 ]
Markou, George [2 ]
Bakas, Nikos [3 ]
Papadrakakis, Manolis [4 ]
机构
[1] Amer Univ Sharjah, Coll Engn, Dept Civil Engn, POB 26666, Sharjah, U Arab Emirates
[2] Univ Pretoria, Fac Engn Built Environm & Informat Technol, Dept Civil Engn, Pretoria, South Africa
[3] Cyprus Inst, Aglandjia, Cyprus
[4] Natl Tech Univ Athens, Inst Struct Anal & Antiseism Res, Zografou Campus, Athens, Greece
关键词
Nonlinear FEA; Artificial Intelligence; FRP; Deep Beams without Stirrups; TIE MODEL; STRENGTH; BEHAVIOR; STRUT; GFRP; RESISTANCE; MEMBERS; TESTS; BARS;
D O I
10.1016/j.engstruct.2022.114441
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The presented work utilizes Artificial Intelligence (AI) algorithms, to model and interpret the behavior of the fiber reinforced polymer (FRP)-reinforced concrete deep beams without stirrups. This is done by first running an extensive nonlinear finite element analysis (NLFEA) investigation, spanning across the practical ranges of the different input parameters. The FEA modeling is meticulously validated against published experimental results. A total of 93 different models representing a multitude of possible FRP-reinforced deep beam designs are rigorously analyzed. The results are then utilized in building an AI-model that describes the shear capacity for FRPreinforced deep beams. The study investigates the effect of several factors on the shear capacity and identifies the vital parameters to be used for further model development. Additionally, the developed AI-model is benchmarked against several design standards for blind predictions on new unseen data and design codes, namely: the EC, ACI 440.1R-15, and the modified ACI 440.1R-15 (for size effect). The AI-model demonstrated superior generalization on the blind prediction dataset in comparison to the design codes.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Shear Behavior of Basalt Fiber Reinforced Concrete Beams with and without Basalt FRP Stirrups
    Issa, Mohsen A.
    Ovitigala, Thilan
    Ibrahim, Mustapha
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2016, 20 (04)
  • [22] ANN-Based Shear Capacity of Steel Fiber-Reinforced Concrete Beams without Stirrups
    Abambres, Miguel
    Lantsoght, Eva O. L.
    FIBERS, 2019, 7 (10)
  • [23] Size Effect on Shear Strength of FRP Reinforced Concrete Beams without Stirrups
    Alam, M. S.
    Hussein, A.
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2013, 17 (04) : 507 - 516
  • [24] Punching Shear Strength of FRP-Reinforced Concrete Slabs without Shear Reinforcements: A Reliability Assessment
    Alkhatib, Soliman
    Deifalla, Ahmed
    POLYMERS, 2022, 14 (09)
  • [25] How do steel fibers improve the shear capacity of reinforced concrete beams without stirrups?
    Lantsoght, Eva O. L.
    COMPOSITES PART B-ENGINEERING, 2019, 175
  • [26] Shear strength of FRP-reinforced concrete deep beams: Extension of beam and arch action model based on data-driven analysis
    Nguyen, Phan Duy
    Dang, Vu Hiep
    STRUCTURES, 2025, 74
  • [27] Shear strength of steel fiber reinforced concrete deep beams without stirrups
    Birincioglu, Mustafa I.
    Keskin, Riza S. O.
    Arslan, Guray
    ADVANCES IN CONCRETE CONSTRUCTION, 2022, 13 (01) : 1 - 10
  • [28] Shear Strength Prediction of FRP-reinforced Concrete Beams Using an Extreme Gradient Boosting Framework
    Kaveh, Ali
    Javadi, Seyed Mohammad
    Moghanni, Roya Mahdipour
    PERIODICA POLYTECHNICA-CIVIL ENGINEERING, 2022, 66 (01): : 18 - 29
  • [29] Prediction of shear strength for CFRP reinforced concrete beams without stirrups
    Elghandour, Bahaa
    Eltahawy, Reham
    Shedid, Marwan
    Abdelrahman, Amr
    ENGINEERING STRUCTURES, 2023, 284
  • [30] Shear performance and capacity of FRP reinforced concrete beams: Comprehensive review and design evaluation
    Mai, Guanghao
    Pan, Zezhou
    Zhen, Hao
    Deng, Xuhua
    Zheng, Chumao
    Qiu, Zhenye
    Xiong, Zhe
    Li, Lijuan
    ADVANCES IN STRUCTURAL ENGINEERING, 2024, 27 (15) : 2569 - 2591