Knowledge Transfer Strategies for Vector Evaluated Particle Swarm Optimization

被引:0
|
作者
Harrison, Kyle Robert [1 ]
Ombuki-Berman, Beatrice [1 ]
Engelbrecht, Andries P. [2 ]
机构
[1] Brock Univ, Dept Comp Sci, St Catharines, ON L2S 3A1, Canada
[2] Univ Pretoria, Dept Comp Sci, ZA-0002 Pretoria, South Africa
关键词
Vector evaluated particle swarm optimization (VEPSO); multi-swarm particle swarm optimization; multi-objective optimization (MOO); knowledge transfer strategy (KTS); global guide selection; MULTIOBJECTIVE EVOLUTIONARY ALGORITHMS; PERFORMANCE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Vector evaluated particle swarm optimization (VEPSO) is a multi-swarm variant of the traditional particle swarm optimization (PSO) algorithm applied to multi-objective problems (MOPs). Each sub-objective is allocated a single sub-swarm and knowledge transfer strategies (KTSs) are used to pass information between swarms. The original VEPSO used a ring KTS, and while VEPSO has shown to be successful in solving MOPs, other algorithms have been shown to produce better results. One reason for VEPSO to perform worse than other algorithms may be due to the inefficiency of the KTS used in the original VEPSO. This paper investigates new KTSs for VEPSO in order to improve its performance. The results indicated that a hybrid strategy using parent-centric crossover (PCX) on global best solutions generally lead to a higher hypervolume while using PCX on archive solutions generally lead to a better distributed set of solutions.
引用
收藏
页码:171 / 184
页数:14
相关论文
共 50 条
  • [1] Padding the Dimensions for Knowledge Transfer in the Dynamic Vector Evaluated Particle Swarm Optimisation Algorithm
    Helbig, Marde
    PROCEEDINGS OF 2016 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2016,
  • [2] Using Heterogeneous Knowledge Sharing Strategies with Dynamic Vector-evaluated Particle Swarm Optimisation
    Helbig, Marde
    Engelbrecht, Andries P.
    2014 IEEE SYMPOSIUM ON SWARM INTELLIGENCE (SIS), 2014, : 259 - 266
  • [3] Multiobjective optimization using parallel vector evaluated particle swarm optimization
    Parsopoulos, KE
    Tasoulis, DK
    Vrahatis, MN
    PROCEEDINGS OF THE IASTED INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND APPLICATIONS, VOLS 1AND 2, 2004, : 823 - 828
  • [4] Analysis of Stagnation Behavior of Vector Evaluated Particle Swarm Optimization
    Matthysen, W.
    Engelbrecht, A. P.
    Malan, K. M.
    2013 IEEE SYMPOSIUM ON SWARM INTELLIGENCE (SIS), 2013, : 155 - 163
  • [5] Vector-Evaluated Particle Swarm Optimization With Local Search
    Dibblee, Derek
    Maltese, Justin
    Ombuki-Berman, Beatrice M.
    Engelbrecht, Andries. P.
    2015 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2015, : 187 - 195
  • [6] Solving Inverse Kinematics with Vector Evaluated Particle Swarm Optimization
    Riekert, Zuhnja
    Helbig, Marde
    ADVANCES IN SWARM INTELLIGENCE, ICSI 2017, PT I, 2017, 10385 : 225 - 237
  • [7] Vector evaluated particle swarm optimization (VEPSO): Optimization of a radiometer array antenna
    Gies, D
    Rahmat-Samii, Y
    IEEE ANTENNAS AND PROPAGATION SOCIETY SYMPOSIUM, VOLS 1-4 2004, DIGEST, 2004, : 2297 - 2300
  • [8] Vector Evaluated Particle Swarm Optimization: The Archive's Influence on Performance
    Scheepers, Christiaan
    Engelbrecht, Andries P.
    2017 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2017, : 565 - 572
  • [9] Image Contrast Enhancement by Vector Evaluated Particle Swarm Optimization (VEPSO)
    Barui, Rajib
    Chatterjee, Arpitam
    Tudu, Bipan
    2014 INTERNATIONAL CONFERENCE ON CONTROL, INSTRUMENTATION, ENERGY & COMMUNICATION (CIEC), 2014, : 654 - 657
  • [10] In-cluster vector evaluated particle swarm optimization for distributed regression in WSNs
    Shakibian, Hadi
    Charkari, Nasrollah Moghadam
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2014, 42 : 80 - 91