Solving elliptic interface problems with jump conditions on Cartesian grids

被引:33
作者
Bochkov, Daniil [1 ]
Gibou, Frederic [1 ,2 ]
机构
[1] Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USA
关键词
Poisson equation; Immersed interface; Level-set method; EMBEDDED BOUNDARY METHOD; FINITE-ELEMENT-METHOD; IRREGULAR DOMAINS; POISSONS-EQUATION; ARBITRARY DISCONTINUITIES; IMMERSED BOUNDARY; MULTIGRID METHODS; HEAT-EQUATIONS; DISCRETIZATION; ALGORITHMS;
D O I
10.1016/j.jcp.2020.109269
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a simple numerical algorithm for solving elliptic equations where the diffusion coefficient, the source term, the solution and its flux are discontinuous across an irregular interface. The algorithm produces second-order accurate solutions and first-order accurate gradients in the L-infinity-norm on Cartesian grids. The condition number is bounded, regardless of the ratio of the diffusion constant and scales like that of the standard 5-point stencil approximation on a rectangular grid with no interface. Numerical examples are given in two and three spatial dimensions. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:13
相关论文
共 68 条
[1]   A comparison of algebraic multigrid and geometric immersed interface multigrid methods for interface problems [J].
Adams, L ;
Chartier, TP .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 26 (03) :762-784
[2]   New geometric immersed interface multigrid solvers [J].
Adams, L ;
Chartier, TP .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 25 (05) :1516-1533
[3]   The immersed interface/multigrid methods for interface problems [J].
Adams, L ;
Li, ZL .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2002, 24 (02) :463-479
[4]  
[Anonymous], 1996, CAMBRIDGE MONOGRAPHS
[5]  
[Anonymous], 2006, SIAM FRONT APPL MATH
[6]  
[Anonymous], [No title captured]
[7]  
[Anonymous], [No title captured]
[8]  
[Anonymous], PETSCWEB PAGE
[9]   FINITE ELEMENT METHOD FOR ELLIPTIC EQUATIONS WITH DISCONTINUOUS COEFFICIENTS [J].
BABUSKA, I .
COMPUTING, 1970, 5 (03) :207-&
[10]   Fracturing rigid materials [J].
Bao, Zhaosheng ;
Hong, Jeong-Mo ;
Teran, Joseph ;
Fedkiw, Ronald .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2007, 13 (02) :370-378