Nonparametric M-estimation with long-memory errors

被引:6
作者
Beran, J
Ghosh, S
Sibbertsen, P
机构
[1] Univ Konstanz, Dept Math & Stat, D-78457 Constance, Germany
[2] Univ Dortmund, Dept Stat, Dortmund, Germany
关键词
CONVERGENCE; REGRESSION;
D O I
10.1016/S0378-3758(02)00391-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate the behavior of nonparametric kernel M-estimators in the presence of long-memory errors. The optimal bandwidth and a central limit theorem are obtained. It turns out that in the Gaussian case all kernel M-estimators have the same limiting normal distribution. The motivation behind this study is illustrated with an example. (C) 2002 Elsevier B.V. All rights reserved.
引用
收藏
页码:199 / 205
页数:7
相关论文
共 19 条
[1]  
Beran, 1994, STAT LONG MEMORY PRO
[3]  
BERAN J, 1999, 9916 CTR FIN EC
[4]  
Beran J., 1992, STAT SCI, V7, P404, DOI [DOI 10.1214/SS/1177011122, 10.1214/ss/1177011122]
[5]  
Billingsley P, 1968, Convergence of Probability Measures
[6]   ROBUST NONPARAMETRIC REGRESSION ESTIMATION FOR DEPENDENT OBSERVATIONS [J].
BOENTE, G ;
FRAIMAN, R .
ANNALS OF STATISTICS, 1989, 17 (03) :1242-1256
[7]  
Cox D.R., 1984, LONG RANGE DEPENDENC, P55
[8]   NONPARAMETRIC REGRESSION UNDER LONG-RANGE DEPENDENT NORMAL ERRORS [J].
CSORGO, S ;
MIELNICZUK, J .
ANNALS OF STATISTICS, 1995, 23 (03) :1000-1014
[9]  
David H. T., 1984, STAT APPRAISAL, P509
[10]   Nonparametric trend estimation in replicated time series [J].
Ghosh, S .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2001, 97 (02) :263-274