Scattering and bound states of fermions in the modified Hulthen potential

被引:8
作者
de Castro, A. S. [1 ]
Armat, A. [2 ]
Hassanabadi, H. [2 ]
机构
[1] UNESP, Dept Fis & Quim, BR-12516410 Guaratingueta, SP, Brazil
[2] Shahrood Univ, Dept Phys, Shahrood, Iran
关键词
KLEIN-GORDON EQUATION; DIRAC-EQUATION; SCHRODINGER-EQUATION; VECTOR; PLUS;
D O I
10.1140/epjp/i2014-14216-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the present work the scattering of a fermion in the modified Hulthen potential is considered with a general vector and scalar and we solved the Dirac equation in the one-dimensional space. The transmission and reflection coefficients are reported. The bound-state solution is also given. The study shows the asymptotic behavior of the wave function in bound-state and scattering states solutions.
引用
收藏
页数:7
相关论文
共 18 条
[1]   Schrodinger Equation with Hulthen Potential Plus Ring-Shaped Potential [J].
Agboola, D. .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 55 (06) :972-976
[2]  
Braun O.M., 2004, TEXT MONOGR
[3]   Stationary states of fermions in a sign potential with a mixed vector-scalar coupling [J].
Castilho, W. M. ;
de Castro, A. S. .
ANNALS OF PHYSICS, 2014, 340 (01) :1-12
[4]   Exactly complete solutions of the Coulomb potential plus a new ring-shaped potential [J].
Chen, CY ;
Dong, SH .
PHYSICS LETTERS A, 2005, 335 (5-6) :374-382
[5]   Exact solutions of the Schrodinger equation for a new ring-shaped nonharmonic oscillator potential [J].
Cheng Yan-Fu ;
Dai Tong-Qing .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2008, 23 (12) :1919-1927
[6]  
Cheng YF, 2007, COMMUN THEOR PHYS, V48, P431
[7]   Confinement of fermions by mixed vector-scalar linear potentials in two-dimensional space-time [J].
de Castro, AS .
PHYSICS LETTERS A, 2002, 305 (3-4) :100-104
[8]   DIRAC PARTICLES IN THE POTENTIAL -1/[X] [J].
DOMINGUEZADAME, F .
AMERICAN JOURNAL OF PHYSICS, 1990, 58 (09) :886-888
[9]  
Gou Y., 2005, PHYS LETT A, V338, P90
[10]   THE RELATIVISTIC ONE-DIMENSIONAL SQUARE POTENTIAL [J].
GUMBS, G ;
KIANG, D .
AMERICAN JOURNAL OF PHYSICS, 1986, 54 (05) :462-463