Parameterized Robust Control Invariant Sets for Linear Systems: Theoretical Advances and Computational Remarks

被引:76
作者
Rakovic, Sasa V. [1 ,2 ]
Baric, Miroslav [3 ]
机构
[1] Otto VonGuericke Univ Magdegurg, Inst Automat Engn, D-39106 Magdeburg, Germany
[2] Univ Oxford, Dept Engn Sci, Oxford OX1 2JD, England
[3] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA
关键词
Control Lyapunov functions; linear polytopic case; MODEL-PREDICTIVE CONTROL; DISCRETE-TIME-SYSTEMS; FEEDBACK; REACHABILITY;
D O I
10.1109/TAC.2010.2042341
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We characterize a family of parametrized robust control invariant sets for linear discrete time systems subject to additive but bounded state disturbances. The existence of a member of the introduced family of parametrized robust control invariant sets can be verified by solving a tractable convex optimization problem in the linear convex case, which reduces to the standard linear or convex quadratic programme in the linear polytopic case. The developed method can also be utilized to detect and obtain an implicit representation of local control Lyapunov functions in the linear convex case from the solution of a single and tractable convex optimization problem. The offered method permits for the computation of polytopic robust control invariant sets and local control Lyapunov functions of indirectly controlled and limited complexity in the linear polytopic case.
引用
收藏
页码:1599 / 1614
页数:16
相关论文
共 50 条
  • [21] Output Feedback Constrained Regulation of Linear Systems via Controlled-Invariant Sets
    Almeida, Tiago A.
    Dorea, Carlos E. T.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (07) : 3378 - 3385
  • [22] Robust iterative learning control for linear systems with multiple time-invariant parametric uncertainties
    Dinh Hoa Nguyen
    Banjerdpongchai, David
    INTERNATIONAL JOURNAL OF CONTROL, 2010, 83 (12) : 2506 - 2518
  • [23] Event-Triggered Parameterized Control for Stabilization of Linear Systems
    Rajan, Anusree
    Tallapragada, Pavankumar
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 3903 - 3910
  • [24] Convex-lifting-based robust control design using the tunable robust invariant sets
    Oravec, Juraj
    Holaza, Juraj
    Horvathova, Michaela
    Nguyen, Ngoc A.
    Kvasnica, Michal
    Bakosova, Monika
    EUROPEAN JOURNAL OF CONTROL, 2019, 49 : 44 - 52
  • [25] Plug-and-play model predictive control based on robust control invariant sets
    Riverso, Stefano
    Farina, Marcello
    Ferrari-Trecate, Giancarlo
    AUTOMATICA, 2014, 50 (08) : 2179 - 2186
  • [26] Necessary and sufficient conditions for constraint satisfaction in switched systems using switch-robust control invariant sets
    Danielson, Claus
    Bridgeman, Leila J.
    Di Cairano, Stefano
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2019, 29 (09) : 2589 - 2602
  • [27] An algorithm for computing robust forward invariant sets of two dimensional nonlinear systems
    Mukhopadhyay, Shayok
    Zhang, Fumin
    ASIAN JOURNAL OF CONTROL, 2021, 23 (05) : 2403 - 2419
  • [28] Hierarchical clustering of constrained dynamic systems using robust positively invariant sets
    Wang, Wenqing
    Koeln, Justin P.
    AUTOMATICA, 2023, 147
  • [29] Robust Invariant Sets Generation for State-Constrained Perturbed Polynomial Systems
    Xue, Bai
    Wang, Qiuye
    Zhan, Naijun
    Franzle, Martin
    PROCEEDINGS OF THE 2019 22ND ACM INTERNATIONAL CONFERENCE ON HYBRID SYSTEMS: COMPUTATION AND CONTROL (HSCC '19), 2019, : 128 - 137
  • [30] Robust H∞ Control for Linear Systems with Delay in State or Input
    Tian, Engang
    Zhao, Xia
    Wang, Wenning
    Gu, Zhou
    2010 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-5, 2010, : 2046 - +