Sub-10 nm Au-Ag Heterogeneous Plasmonic Nanogaps

被引:14
|
作者
Gu, Panpan [1 ,4 ]
Zheng, Tianxing [1 ]
Zhang, Wei [1 ]
Ai, Bin [2 ]
Zhao, Zhiyuan [3 ]
Zhang, Gang [1 ]
机构
[1] Jilin Univ, Coll Chem, State Key Lab Supramol Struct & Mat, Changchun 130012, Peoples R China
[2] Chongqing Univ, Chongqing Key Lab Biopercept & Intelligent Inform, Sch Microelect & Commun Engn, Chongqing 400044, Peoples R China
[3] Yancheng Teachers Univ, Inst New Energy Chem Storage & Power Sources, Coll Appl Chem & Environm Engn, Yancheng 224002, Peoples R China
[4] Eastern Liaoning Univ, Dandong, Coll Chem Engn & Machinery, Dandong 118003, Peoples R China
来源
ADVANCED MATERIALS INTERFACES | 2020年 / 7卷 / 06期
基金
中国国家自然科学基金;
关键词
heterogeneous nanogaps; nanoskiving; surface-enhanced Raman spectroscopy (SERS); surface plasmon resonance; ENHANCED RAMAN-SCATTERING; SUBNANOMETER GAPS; P-AMINOTHIOPHENOL; SILVER; NANOPARTICLES; SERS; NANOSTRUCTURES; LITHOGRAPHY; DIMERS;
D O I
10.1002/admi.201902021
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Controlling the formation of bimetallic heterogeneous nanogaps structures have many applications in the plasmonics and catalysis fields. Here, a simple and systematic method is developed to fabricate tunable and stable Au-Ag nanowire-based plasmonic metamaterials. The sub-10 nm Au-Ag bimetallic heterogeneous nanogaps with desirable optical properties are fabricated by a simple, ultrarapid, and robust nanoskiving technique. Compared to the monometallic linear Ag-Ag and Au-Au nanogaps, the Au-Ag bimetallic heterogeneous nanogaps exhibit remarkable surface enhanced Raman spectroscopy (SERS) enhancement properties due to the nanogaps between the adjacent Au/Ag nanowires, and the Ag/Au bimetallic composite film. In addition, 3D bimetallic heterogeneous nanogaps are built and produce much stronger electric fields than those of the 1D linear nanogaps. The sub-10 nm Au-Ag heterogeneous nanogaps are promising to be used in SERS substrate, plasmon devices, catalysis, and printed electronics.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Tunable and Broadband Plasmonic Absorption via Dispersible Nanoantennas with Sub-10 nm Gaps
    Mangelson, Bryan F.
    Park, Daniel J.
    Ku, Jessie C.
    Osberg, Kyle D.
    Schatz, George C.
    Mirkin, Chad A.
    SMALL, 2013, 9 (13) : 2250 - 2254
  • [22] CMOS Scaling for sub-90 nm to sub-10 nm
    Iwai, H
    17TH INTERNATIONAL CONFERENCE ON VLSI DESIGN, PROCEEDINGS: DESIGN METHODOLOGIES FOR THE GIGASCALE ERA, 2004, : 30 - 35
  • [23] Abnormal thermal stability of sub-10 nm Au nanoparticles and their high catalytic activity
    Cao, Xiaoqing
    Zhou, Jun
    Wang, Hongna
    Li, Song
    Wang, Wei
    Qin, Gaowu
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (18) : 10980 - 10987
  • [24] Broadband light generation from Au-Al2O3-Al sub-10 nm plasmonic gap structures
    Yao, Lin-Hua
    Ma, Zong-Wei
    Song, Xian-Yin
    Xiao, Xiang-Heng
    Wang, Xia
    Zhou, Nan
    Zhai, Tian-You
    Zhang, Jun-Pei
    Han, Jun-Bo
    JOURNAL OF MATERIALS CHEMISTRY C, 2017, 5 (27) : 6771 - 6776
  • [25] Sub-10 nm Carbon Nanotube Transistor
    Franklin, Aaron D.
    Han, Shu-Jen
    Tulevski, George S.
    Luisier, Mathieu
    Breslin, Chris M.
    Gignac, Lynne
    Lundstrom, Mark S.
    Haensch, Wilfried
    2011 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2011,
  • [26] Fluorescence nanoscopy at the sub-10 nm scale
    Luciano A. Masullo
    Alan M. Szalai
    Lucía F. Lopez
    Fernando D. Stefani
    Biophysical Reviews, 2021, 13 : 1101 - 1112
  • [27] Challenges of SEM metrology at sub-10 nm
    Babin, Sergey
    Borisov, Sergey
    Peroz, Christophe
    Yushmanov, Peter
    METROLOGY, INSPECTION, AND PROCESS CONTROL FOR MICROLITHOGRAPHY XXVI, PTS 1 AND 2, 2012, 8324
  • [28] Challenges for sub-10 nm CMOS devices
    Mogami, Tohru
    Wakabayashi, Hitoshi
    2006 INTERNATIONAL WORKSHOP ON NANO CMOS, PROCEEDINGS, 2006, : 125 - 127
  • [29] Sub-10 nm imprint lithography and applications
    Krauss, PR
    Chou, SY
    55TH ANNUAL DEVICE RESEARCH CONFERENCE, DIGEST - 1997, 1997, : 90 - 91
  • [30] Patterning Challenges in the sub-10 nm Era
    Preil, Moshe E.
    OPTICAL MICROLITHOGRAPHY XXIX, 2016, 9780