Spectral-spatial classification combined with diffusion theory based inverse modeling of hyperspectral images

被引:1
作者
Paluchowski, Lukasz A. [1 ]
Bjorgan, Asgeir [1 ]
Nordgaard, Havard B. [2 ]
Randeberg, Lise L. [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Elect & Telecommun, N-7034 Trondheim, Norway
[2] St Olavs Hosp, Trondheim, Norway
来源
PHOTONIC THERAPEUTICS AND DIAGNOSTICS XII | 2016年 / 9689卷
关键词
reflectance spectroscopy; image classification; tissue optics; inverse skin model; optical properties; burn injuries;
D O I
10.1117/12.2212163
中图分类号
TH742 [显微镜];
学科分类号
摘要
Hyperspectral imagery opens a new perspective for biomedical diagnostics and tissue characterization. High spectral resolution can give insight into optical properties of the skin tissue. However, at the same time the amount of collected data represents a challenge when it comes to decomposition into clusters and extraction of useful diagnostic information. In this study spectral-spatial classification and inverse diffusion modeling were employed to hyperspectral images obtained from a porcine burn model using a hyperspectral push-broom camera. The implemented method takes advantage of spatial and spectral information simultaneously, and provides information about the average optical properties within each cluster. The implemented algorithm allows mapping spectral and spatial heterogeneity of the burn injury as well as dynamic changes of spectral properties within the burn area. The combination of statistical and physics informed tools allowed for initial separation of different burn wounds and further detailed characterization of the injuries in short post-injury time.
引用
收藏
页数:11
相关论文
共 24 条
[1]   Hyperspectral imaging and quantitative analysis for prostate cancer detection [J].
Akbari, Hamed ;
Halig, Luma V. ;
Schuster, David M. ;
Osunkoya, Adeboye ;
Master, Viraj ;
Nieh, Peter T. ;
Chen, Georgia Z. ;
Fei, Baowei .
JOURNAL OF BIOMEDICAL OPTICS, 2012, 17 (07)
[2]   Cancer detection using infrared hyperspectral imaging [J].
Akbari, Hamed ;
Uto, Kuniaki ;
Kosugi, Yukio ;
Kojima, Kazuyuki ;
Tanaka, Naofumi .
CANCER SCIENCE, 2011, 102 (04) :852-857
[3]   Spectral-Spatial Classification of Hyperspectral Data Based on a Stochastic Minimum Spanning Forest Approach [J].
Bernard, Kevin ;
Tarabalka, Yuliya ;
Angulo, Jesus ;
Chanussot, Jocelyn ;
Benediktsson, Jon Atli .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (04) :2008-2021
[4]   Towards real-time medical diagnostics using hyperspectral imaging technology [J].
Bjorgan, Asgeir ;
Randeberg, Lise Lyngsnes .
CLINICAL AND BIOMEDICAL SPECTROSCOPY AND IMAGING IV, 2015, 9537
[5]   Estimation of skin optical parameters for real-time hyperspectral imaging applications [J].
Bjorgan, Asgeir ;
Milanic, Matija ;
Randeberg, Lise Lyngsnes .
JOURNAL OF BIOMEDICAL OPTICS, 2014, 19 (06)
[6]   Hyperspectral imaging-based wound analysis using mixture-tuned matched filtering classification method [J].
Calin, Mihaela Antonina ;
Coman, Toma ;
Parasca, Sorin Viorel ;
Bercaru, Nicolae ;
Savastru, Roxana ;
Manea, Dragos .
JOURNAL OF BIOMEDICAL OPTICS, 2015, 20 (04)
[7]  
Cross K.M., 2010, Assessment of tissue viability in acute thermal injuries using near infrared point spectroscopy
[8]   Hyperspectral imaging as a diagnostic tool for chronic skin ulcers [J].
Denstedt, Martin ;
Pukstad, Brita S. ;
Paluchowski, Lukasz ;
Hernandez-Palacios, Julio E. ;
Randeberg, Lise Lyngsnes .
PHOTONIC THERAPEUTICS AND DIAGNOSTICS IX, 2013, 8565
[9]   A TRANSFORMATION FOR ORDERING MULTISPECTRAL DATA IN TERMS OF IMAGE QUALITY WITH IMPLICATIONS FOR NOISE REMOVAL [J].
GREEN, AA ;
BERMAN, M ;
SWITZER, P ;
CRAIG, MD .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1988, 26 (01) :65-74
[10]   Noninvasive assessment of burn wound severity using optical technology: A review of current and future modalities [J].
Kaiser, Meghann ;
Yafi, Amr ;
Cinat, Marianne ;
Choi, Bernard ;
Durkin, Anthony J. .
BURNS, 2011, 37 (03) :377-386