Transport Spectroscopy of Ultraclean Tunable Band Gaps in Bilayer Graphene

被引:40
作者
Icking, Eike [1 ,2 ,3 ]
Banszerus, Luca [1 ,2 ,3 ]
Woertche, Frederike [1 ,2 ]
Volmer, Frank [1 ,2 ]
Schmidt, Philipp [1 ,2 ,3 ]
Steiner, Corinne [1 ,2 ,3 ]
Engels, Stephan [1 ,2 ,3 ]
Hesselmann, Jonas [1 ,2 ]
Goldsche, Matthias [1 ,2 ,3 ]
Watanabe, Kenji [4 ]
Taniguchi, Takashi [5 ]
Volk, Christian [1 ,2 ,3 ]
Beschoten, Bernd [1 ,2 ]
Stampfer, Christoph [1 ,2 ,3 ]
机构
[1] Rhein Westfal TH Aachen, JARA FIT, D-52074 Aachen, Germany
[2] Rhein Westfal TH Aachen, Inst Phys 2, D-52074 Aachen, Germany
[3] Forschungszentrum Julich, Peter Grunberg Inst PGI 9, D-52425 Julich, Germany
[4] Natl Inst Mat Sci, Res Ctr Funct Mat, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
[5] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
基金
欧洲研究理事会;
关键词
band gap; bilayer graphene; transport spectroscopy; DER-WAALS HETEROSTRUCTURES; FIELD-EFFECT TRANSISTORS; LAYER; DISORDER; STATES;
D O I
10.1002/aelm.202200510
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The importance of controlling both the charge carrier density and the band gap of a semiconductor cannot be overstated, as it opens the doors to a wide range of applications, including, for example, highly-tunable transistors, photodetectors, and lasers. Bernal-stacked bilayer graphene is a unique van-der-Waals material that allows tuning of the band gap by an out-of-plane electric field. Although the first evidence of the tunable gap is already found 10 years ago, it took until recent to fabricate sufficiently clean heterostructures where the electrically induced gap can be used to fully suppress transport or confine charge carriers. Here, a detailed study of the tunable band gap in gated bilayer graphene characterized by temperature-activated transport and finite-bias spectroscopy measurements is presented. The latter method allows comparing different gate materials and device technologies, which directly affects the disorder potential in bilayer graphene. It is shown that graphite-gated bilayer graphene exhibits extremely low disorder and as good as no subgap states resulting in ultraclean tunable band gaps up to 120 meV. The size of the band gaps are in good agreement with theory and allow complete current suppression making a wide range of semiconductor applications possible.
引用
收藏
页数:10
相关论文
共 85 条
[21]   Gate-Defined Confinement in Bilayer Graphene-Hexagonal Boron Nitride Hybrid Devices [J].
Goossens, Augustinus M. ;
Driessen, Stefanie C. M. ;
Baart, Tim A. ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Vandersypen, Lieven M. K. .
NANO LETTERS, 2012, 12 (09) :4656-4660
[22]   Measurement of the electronic compressibility of bilayer graphene [J].
Henriksen, E. A. ;
Eisenstein, J. P. .
PHYSICAL REVIEW B, 2010, 82 (04)
[23]   Dynamic band structure and capacitance effects in scanning tunneling spectroscopy of bilayer graphene [J].
Holdman, Gregory R. ;
Krebs, Zachary J. ;
Behn, Wyatt A. ;
Smith, Keenan J. ;
Watanabe, K. ;
Taniguchi, T. ;
Brar, Victor W. .
APPLIED PHYSICS LETTERS, 2019, 115 (18)
[24]   Atomic structure of graphene on SiO2 [J].
Ishigami, Masa ;
Chen, J. H. ;
Cullen, W. G. ;
Fuhrer, M. S. ;
Williams, E. D. .
NANO LETTERS, 2007, 7 (06) :1643-1648
[25]   Spin-orbit-driven band inversion in bilayer graphene by the van der Waals proximity effect [J].
Island, J. O. ;
Cui, X. ;
Lewandowski, C. ;
Khoo, J. Y. ;
Spanton, E. M. ;
Zhou, H. ;
Rhodes, D. ;
Hone, J. C. ;
Taniguchi, T. ;
Watanabe, K. ;
Levitov, L. S. ;
Zaletel, M. P. ;
Young, A. F. .
NATURE, 2019, 571 (7763) :85-+
[26]   Quantum Transport and Field-Induced Insulating States in Bilayer Graphene pnp Junctions [J].
Jing, Lei ;
Velasco, Jairo, Jr. ;
Kratz, Philip ;
Liu, Gang ;
Bao, Wenzhong ;
Bockrath, Marc ;
Lau, Chun Ning .
NANO LETTERS, 2010, 10 (10) :4000-4004
[27]   Determination of the trigonal warping orientation in Bernal-stacked bilayer graphene via scanning tunneling microscopy [J].
Joucken, Frederic ;
Ge, Zhehao ;
Quezada-Lopez, Eberth A. ;
Davenport, John L. ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Velasco, Jairo, Jr. .
PHYSICAL REVIEW B, 2020, 101 (16)
[28]   Accurate tight-binding models for the π bands of bilayer graphene [J].
Jung, Jeil ;
MacDonald, Allan H. .
PHYSICAL REVIEW B, 2014, 89 (03)
[29]   Direct Probing of the Electronic Structures of Single-Layer and Bilayer Graphene with a Hexagonal Boron Nitride Tunneling Barrier [J].
Jung, Suyong ;
Myoung, Nojoon ;
Park, Jaesung ;
Jeong, Tae Young ;
Kim, Hakseong ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Ha, Dong Han ;
Hwang, Chanyong ;
Park, Hee Chul .
NANO LETTERS, 2017, 17 (01) :206-213
[30]   Gap state analysis in electric-field-induced band gap for bilayer graphene [J].
Kanayama, Kaoru ;
Nagashio, Kosuke .
SCIENTIFIC REPORTS, 2015, 5