Form invariance, topological fluctuations and mass gap of Yang-Mills theory

被引:2
作者
Qian, Yachao [1 ]
Nian, Jun [2 ,3 ]
机构
[1] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA
[2] Inst Hautes Etud Sci, 35 Route Chartres, F-91440 Bures Sur Yvette, France
[3] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 2019年 / 34卷 / 31期
关键词
Yang-Mills theory; form invariance; topological term; topological fluctuations; pseudo zero modes; Higgs mechanism; mass gap; SCHRODINGER-EQUATIONS; GROSS-PITAEVSKII; CONSERVATION; SYMMETRIES;
D O I
10.1142/S0217751X19501884
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
In order to have a new perspective on the long-standing problem of the mass gap in Yang-Mills theory, we study in this paper the quantum Yang-Mills theory in the presence of topologically nontrivial backgrounds. The topologically stable gauge fields are constrained by the form invariance condition and the topological properties. Obeying these constraints, the known classical solutions to the Yang-Mills equation in the three-and four-dimensional Euclidean spaces are recovered, and the other allowed configurations form the nontrivial topological fluctuations at quantum level. Together, they constitute the background configurations, upon which the quantum Yang-Mills theory can be constructed. We demonstrate that the theory mimics the Higgs mechanism in a certain limit and develops a mass gap at semiclassical level on a flat space with finite size or on a sphere.
引用
收藏
页数:97
相关论文
共 50 条
[1]   CLASSICAL SOLUTIONS OF SU(2) YANG-MILLS THEORIES [J].
ACTOR, A .
REVIEWS OF MODERN PHYSICS, 1979, 51 (03) :461-525
[2]   PLASMONS, GAUGE INVARIANCE, AND MASS [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1963, 130 (01) :439-&
[3]  
[Anonymous], 1931, STUD MATH
[4]  
[Anonymous], 1931, Stud. Math., DOI DOI 10.4064/SM-3-1-174-179
[5]  
Bao W., ARXIV151207123MATHPH
[6]   MATHEMATICAL THEORY AND NUMERICAL METHODS FOR BOSE-EINSTEIN CONDENSATION [J].
Bao, Weizhu ;
Cai, Yongyong .
KINETIC AND RELATED MODELS, 2013, 6 (01) :1-135
[7]   PSEUDOPARTICLE SOLUTIONS OF YANG-MILLS EQUATIONS [J].
BELAVIN, AA ;
POLYAKOV, AM ;
SCHWARTZ, AS ;
TYUPKIN, YS .
PHYSICS LETTERS B, 1975, 59 (01) :85-87
[8]  
Bogolubsky I., 2007, PoS LATTICE2007, P290, DOI [10.22323/1.042.0290, DOI 10.22323/1.042.0290]
[9]   STABILITY AND GAP PHENOMENA FOR YANG-MILLS FIELDS [J].
BOURGUIGNON, JP ;
LAWSON, HB ;
SIMONS, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1979, 76 (04) :1550-1553
[10]  
Burnier AAL, 2007, PROC MONOGR ENG WATE, P323