Advanced strategy for metabolite exploration in filamentous fungi

被引:10
|
作者
Deng, Huaxiang [1 ,2 ]
Bai, Yajun [3 ]
Fan, Tai-Ping [4 ]
Zheng, Xiaohui [3 ]
Cai, Yujie [1 ]
机构
[1] Jiangnan Univ, Sch Biotechnol, Minist Educ, Key Lab Ind Biotechnol, Wuxi, Jiangsu, Peoples R China
[2] Shenzhen Inst Adv Technol, Inst Synthet Biol, Ctr Synthet Biochem, Shenzhen, Peoples R China
[3] Northwest Univ, Coll Life Sci, Xian, Shanxi, Peoples R China
[4] Univ Cambridge, Dept Pharmacol, Cambridge, England
基金
中国博士后科学基金;
关键词
Natural products; filamentous fungi; high throughput engineering; pathway deconstruction; drug discovery; biosynthetic gene clusters; metabolic balance; BIOSYNTHETIC GENE CLUSTERS; OXIDATIVE STRESS; HETEROLOGOUS EXPRESSION; PENICILLIUM-CHRYSOGENUM; ASPERGILLUS-ORYZAE; ACID PRODUCTION; L-MALATE; EFFICIENT; PATHWAY; PROTEIN;
D O I
10.1080/07388551.2019.1709798
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Filamentous fungi comprise an abundance of gene clusters that encode high-value metabolites, whereas affluent gene clusters remain silent during laboratory conditions. Complex cellular metabolism further limits these metabolite yields. Therefore, diverse strategies such as genetic engineering and chemical mutagenesis have been developed to activate these cryptic pathways and improve metabolite productivity. However, lower efficiencies of gene modifications and screen tools delayed the above processes. To address the above issues, this review describes an alternative design-construction evaluation optimization (DCEO) approach. The DCEO tool provides theoretical and practical principles to identify potential pathways, modify endogenous pathways, integrate exogenous pathways, and exploit novel pathways for their diverse metabolites and desirable productivities. This DCEO method also offers different tactics to balance the cellular metabolisms, facilitate the genetic engineering, and exploit the scalable metabolites in filamentous fungi.
引用
收藏
页码:180 / 198
页数:19
相关论文
共 50 条
  • [41] Acrylamide degradation by filamentous fungi used in food and beverage industries
    Wakaizumi, Masanori
    Yamamoto, Hirotaka
    Fujimoto, Naoko
    Ozeki, Kenji
    JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2009, 108 (05) : 391 - 393
  • [42] Current state of genome-scale modeling in filamentous fungi
    Brandl, Julian
    Andersen, Mikael R.
    BIOTECHNOLOGY LETTERS, 2015, 37 (06) : 1131 - 1139
  • [43] The role of filamentous fungi in advancing the development of a sustainable circular bioeconomy
    Wikandari, Rachma
    Hasniah, Nurul
    Taherzadeh, Mohammad J.
    BIORESOURCE TECHNOLOGY, 2022, 345
  • [44] Filamentous fungi as a source of natural antioxidants
    Smith, Helen
    Doyle, Sean
    Murphy, Richard
    FOOD CHEMISTRY, 2015, 185 : 389 - 397
  • [45] Antifungal Resistance in Yeasts and Filamentous Fungi
    Shin, Jong Hee
    INFECTION AND CHEMOTHERAPY, 2009, 41 (02) : 65 - 71
  • [46] Pyrene degradation by yeasts and filamentous fungi
    Romero, MC
    Salvioli, ML
    Cazau, MC
    Arambarri, AM
    ENVIRONMENTAL POLLUTION, 2002, 117 (01) : 159 - 163
  • [47] Heterologous expression of genes in filamentous fungi
    Kruszewska, JS
    ACTA BIOCHIMICA POLONICA, 1999, 46 (01) : 181 - 195
  • [48] Protein glycosylation pathways in filamentous fungi
    Deshpande, Nandan
    Wilkins, Marc R.
    Packer, Nicolle
    Nevalainen, Helena
    GLYCOBIOLOGY, 2008, 18 (08) : 626 - 637
  • [49] Genetic Engineering of Filamentous Fungi for Efficient Protein Expression and Secretion
    Wang, Qin
    Zhong, Chao
    Xiao, Han
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2020, 8
  • [50] Methods for genetic transformation of filamentous fungi
    Dandan Li
    Yu Tang
    Jun Lin
    Weiwen Cai
    Microbial Cell Factories, 16