Advanced strategy for metabolite exploration in filamentous fungi

被引:10
|
作者
Deng, Huaxiang [1 ,2 ]
Bai, Yajun [3 ]
Fan, Tai-Ping [4 ]
Zheng, Xiaohui [3 ]
Cai, Yujie [1 ]
机构
[1] Jiangnan Univ, Sch Biotechnol, Minist Educ, Key Lab Ind Biotechnol, Wuxi, Jiangsu, Peoples R China
[2] Shenzhen Inst Adv Technol, Inst Synthet Biol, Ctr Synthet Biochem, Shenzhen, Peoples R China
[3] Northwest Univ, Coll Life Sci, Xian, Shanxi, Peoples R China
[4] Univ Cambridge, Dept Pharmacol, Cambridge, England
基金
中国博士后科学基金;
关键词
Natural products; filamentous fungi; high throughput engineering; pathway deconstruction; drug discovery; biosynthetic gene clusters; metabolic balance; BIOSYNTHETIC GENE CLUSTERS; OXIDATIVE STRESS; HETEROLOGOUS EXPRESSION; PENICILLIUM-CHRYSOGENUM; ASPERGILLUS-ORYZAE; ACID PRODUCTION; L-MALATE; EFFICIENT; PATHWAY; PROTEIN;
D O I
10.1080/07388551.2019.1709798
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Filamentous fungi comprise an abundance of gene clusters that encode high-value metabolites, whereas affluent gene clusters remain silent during laboratory conditions. Complex cellular metabolism further limits these metabolite yields. Therefore, diverse strategies such as genetic engineering and chemical mutagenesis have been developed to activate these cryptic pathways and improve metabolite productivity. However, lower efficiencies of gene modifications and screen tools delayed the above processes. To address the above issues, this review describes an alternative design-construction evaluation optimization (DCEO) approach. The DCEO tool provides theoretical and practical principles to identify potential pathways, modify endogenous pathways, integrate exogenous pathways, and exploit novel pathways for their diverse metabolites and desirable productivities. This DCEO method also offers different tactics to balance the cellular metabolisms, facilitate the genetic engineering, and exploit the scalable metabolites in filamentous fungi.
引用
收藏
页码:180 / 198
页数:19
相关论文
共 50 条
  • [21] Motif-independent de novo detection of secondary metabolite gene clusters - toward identification from filamentous fungi
    Umemura, Myco
    Koike, Hideaki
    Machida, Masayuki
    FRONTIERS IN MICROBIOLOGY, 2015, 6
  • [22] Strategy for efficient cloning of biosynthetic gene clusters from fungi
    Li, Ruixin
    Li, ZiXin
    Ma, Ke
    Wang, Gang
    Li, Wei
    Liu, Hong-Wei
    Yin, Wen-Bing
    Zhang, Peng
    Liu, Xing-Zhong
    SCIENCE CHINA-LIFE SCIENCES, 2019, 62 (08) : 1087 - 1095
  • [23] TORC1 Signaling in Fungi: From Yeasts to Filamentous Fungi
    Wang, Yuhua
    Zheng, Xi
    Li, Guohong
    Wang, Xin
    MICROORGANISMS, 2023, 11 (01)
  • [24] Strategies for gene disruption and expression in filamentous fungi
    Mei, Yan-Zhen
    Zhu, Ya-Li
    Huang, Peng-Wei
    Yang, Qian
    Dai, Chuan-Chao
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2019, 103 (15) : 6041 - 6059
  • [25] Cell surface display of proteins on filamentous fungi
    Urbar-Ulloa, Jesus
    Montano-Silva, Paul
    Sofia Ramirez-Pelayo, Ana
    Fernandez-Castillo, Elisa
    Amaya-Delgado, Lorena
    Rodriguez-Garay, Benjamin
    Verdin, Jorge
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2019, 103 (17) : 6949 - 6972
  • [26] Flow cytometry and FACS applied to filamentous fungi
    Bleichrodt, Robert-Jan
    Read, Nick D.
    FUNGAL BIOLOGY REVIEWS, 2019, 33 (01) : 1 - 15
  • [27] Quorum sensing in filamentous fungi
    Raina, S.
    De Vizio, D.
    Keshavarz, T.
    JOURNAL OF BIOTECHNOLOGY, 2010, 150 : S76 - S76
  • [28] Chromosome visualisation in filamentous fungi
    Wieloch, Wioletta
    JOURNAL OF MICROBIOLOGICAL METHODS, 2006, 67 (01) : 1 - 8
  • [29] Mating type in filamentous fungi
    Kronstad, JW
    Staben, C
    ANNUAL REVIEW OF GENETICS, 1997, 31 : 245 - 276
  • [30] Histopathology Diagnosis of Filamentous Fungi
    Sundaram Challa
    Radha Sistla
    Current Fungal Infection Reports, 2022, 16 : 17 - 32