The three-body problem and equivariant Riemannian geometry

被引:4
作者
Alvarez-Ramirez, M. [1 ]
Garcia, A. [1 ]
Melendez, J. [1 ]
Reyes-Victoria, J. G. [1 ]
机构
[1] UAM Iztapalapa, Dept Matemat, San Rafael Atlixco 186, Mexico City 09340, DF, Mexico
关键词
HYPERBOLIC PANTS;
D O I
10.1063/1.5000075
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the planar three-body problem with 1/r(2) potential using the Jacobi-Maupertuis metric, making appropriate reductions by Riemannian submersions. We give a different proof of the Gaussian curvature's sign and the completeness of the space reported by Montgomery [Ergodic Theory Dyn. Syst. 25, 921-947 (2005)]. Moreover, we characterize the geodesics contained in great circles. Published by AIP Publishing.
引用
收藏
页数:12
相关论文
共 7 条