Development and Challenges of Functional Electrolytes for High-Performance Lithium-Sulfur Batteries

被引:152
|
作者
Wang, Lili [1 ]
Ye, Yusheng [1 ]
Chen, Nan [1 ]
Huang, Yongxin [1 ]
Li, Li [1 ,2 ]
Wu, Feng [1 ,2 ]
Chen, Renjie [1 ,2 ]
机构
[1] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing Key Lab Environm Sci & Engn, Beijing 100081, Peoples R China
[2] Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
electrolytes; hybrid electrolytes; liquid electrolytes; lithium-sulfur batteries; solid electrolytes; GEL-POLYMER ELECTROLYTE; LI-S BATTERY; HIGH-ENERGY DENSITY; SPARINGLY SOLVATING ELECTROLYTES; CARBONATE-BASED ELECTROLYTE; IONIC LIQUID ELECTROLYTES; ETHER-BASED ELECTROLYTES; GLYCOL) DIMETHYL ETHER; SOLID-ELECTROLYTE; ELECTROCHEMICAL PROPERTIES;
D O I
10.1002/adfm.201800919
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium-sulfur (Li-S) batteries, as one of the most important candidates of next-generation batteries, are famous for high energy density, low cost, and environmental friendly benignity. However, issues originating from polysulfide shuttle of common liquid electrolytes (e.g., capacity fade, poor cycle life, and safe issue) have hindered the applications of Li-S batteries in various occasions. This review summarizes the main efforts in the electrolytes of Li-S batteries, including liquid, solid state, and hybrid electrolyte systems. The development of functional electrolytes for Li-S batteries is hopeful to alleviate the problems Li-S batteries faced today. The liquid electrolytes circumvent the polysulfide shuttle and the resultant problems by utilizing different functional solvents, lithium salts, and additives. Solid-state electrolytes as promising electrolytes are optimized to enhance the ionic conductivity at room temperature and decrease the interfacial resistance. Hybrid electrolytes that consist of two or more single electrolytes may be considered as unique categories because they have the potential advantages than the single electrolyte systems. Challenges and perspectives of Li-S electrolytes are also proposed based on the requirement for high-performance Li-S batteries.
引用
收藏
页数:23
相关论文
共 50 条
  • [11] A Compact Nanoconfined Sulfur Cathode for High-Performance Lithium-Sulfur Batteries
    Li, Zhen
    Guan, Bu Yuan
    Zhang, Jintao
    Lou, Xiong Wen
    JOULE, 2017, 1 (03) : 576 - 587
  • [12] Assessment of ionic liquid electrolytes for high-performance lithium-sulfur batteries using machine learning
    Kilic, Aysegul
    Yildirim, Ramazan
    Eroglu, Damla
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (15) : 21716 - 21726
  • [13] Functional organosulfide electrolyte for high performance lithium-sulfur batteries
    Chen, Shuru
    Gao, Yue
    Wang, Donghai
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [14] Fabrication of a Covalent Triazine Framework Functional Interlayer for High-Performance Lithium-Sulfur Batteries
    Hu, Ben
    Ding, Bing
    Xu, Chong
    Fan, Zengjie
    Luo, Derong
    Li, Peng
    Dou, Hui
    Zhang, Xiaogang
    NANOMATERIALS, 2022, 12 (02)
  • [15] Recent progress of functional separators with catalytic effects for high-performance lithium-sulfur batteries
    Yuan, Cheng
    Yang, Xiaofei
    Zeng, Pan
    Mao, Jing
    Dai, Kehua
    Zhang, Liang
    Sun, Xueliang
    NANO ENERGY, 2021, 84
  • [16] Advances in Cathode Materials for High-Performance Lithium-Sulfur Batteries
    Dong, Chunwei
    Gao, Wang
    Jin, Bo
    Jiang, Qing
    ISCIENCE, 2018, 6 : 151 - 198
  • [17] Tungsten Oxide/Zirconia as a Functional Polysulfide Mediator for High-Performance Lithium-Sulfur Batteries
    Kim, Hee Min
    Hwang, Jang-Yeon
    Bang, Sangin
    Kim, Hun
    Alfaruqi, Muhammad Hilmy
    Kim, Jaekook
    Yoon, Chong Seung
    Sun, Yang-Kook
    ACS ENERGY LETTERS, 2020, 5 (10) : 3168 - 3175
  • [18] High-Performance Lithium-Sulfur Batteries via Molecular Complexation
    Wang, Peiyu
    Kateris, Nikolaos
    Li, Baiheng
    Zhang, Yiwen
    Luo, Jianmin
    Wang, Chuanlong
    Zhang, Yue
    Jayaraman, Amitesh S.
    Hu, Xiaofei
    Wang, Hai
    Li, Weiyang
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (34) : 18865 - 18876
  • [19] Multifunctional Separator Coatings for High-Performance Lithium-Sulfur Batteries
    Kim, Mun Sek
    Ma, Lin
    Choudhury, Snehashis
    Archer, Lynden A.
    ADVANCED MATERIALS INTERFACES, 2016, 3 (22):
  • [20] Aqueous Supramolecular Binder for High-Performance Lithium-Sulfur Batteries
    Liu, Ruliang
    Ou, Jiaxin
    Xie, Lijun
    Liang, Yubing
    Lai, Xinyi
    Deng, Zhaoxia
    Yin, Wei
    POLYMERS, 2023, 15 (12)