Development and Challenges of Functional Electrolytes for High-Performance Lithium-Sulfur Batteries

被引:152
|
作者
Wang, Lili [1 ]
Ye, Yusheng [1 ]
Chen, Nan [1 ]
Huang, Yongxin [1 ]
Li, Li [1 ,2 ]
Wu, Feng [1 ,2 ]
Chen, Renjie [1 ,2 ]
机构
[1] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing Key Lab Environm Sci & Engn, Beijing 100081, Peoples R China
[2] Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
electrolytes; hybrid electrolytes; liquid electrolytes; lithium-sulfur batteries; solid electrolytes; GEL-POLYMER ELECTROLYTE; LI-S BATTERY; HIGH-ENERGY DENSITY; SPARINGLY SOLVATING ELECTROLYTES; CARBONATE-BASED ELECTROLYTE; IONIC LIQUID ELECTROLYTES; ETHER-BASED ELECTROLYTES; GLYCOL) DIMETHYL ETHER; SOLID-ELECTROLYTE; ELECTROCHEMICAL PROPERTIES;
D O I
10.1002/adfm.201800919
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium-sulfur (Li-S) batteries, as one of the most important candidates of next-generation batteries, are famous for high energy density, low cost, and environmental friendly benignity. However, issues originating from polysulfide shuttle of common liquid electrolytes (e.g., capacity fade, poor cycle life, and safe issue) have hindered the applications of Li-S batteries in various occasions. This review summarizes the main efforts in the electrolytes of Li-S batteries, including liquid, solid state, and hybrid electrolyte systems. The development of functional electrolytes for Li-S batteries is hopeful to alleviate the problems Li-S batteries faced today. The liquid electrolytes circumvent the polysulfide shuttle and the resultant problems by utilizing different functional solvents, lithium salts, and additives. Solid-state electrolytes as promising electrolytes are optimized to enhance the ionic conductivity at room temperature and decrease the interfacial resistance. Hybrid electrolytes that consist of two or more single electrolytes may be considered as unique categories because they have the potential advantages than the single electrolyte systems. Challenges and perspectives of Li-S electrolytes are also proposed based on the requirement for high-performance Li-S batteries.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Chitosan as a functional additive for high-performance lithium-sulfur batteries
    Chen, Yilei
    Liu, Naiqiang
    Shao, Hongyuan
    Wang, Weikun
    Gao, Mengyao
    Li, Chengming
    Zhang, Hao
    Wang, Anbang
    Huang, Yaqin
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (29) : 15235 - 15240
  • [2] Advances in High-Performance Lithium-Sulfur Batteries
    Liu Shuai
    Yao Lu
    Zhang Qin
    Li Lu-Lu
    Hu Nan-Tao
    Wei Liang-Ming
    Wei Hao
    ACTA PHYSICO-CHIMICA SINICA, 2017, 33 (12) : 2339 - 2358
  • [3] High performance lithium-sulfur batteries: advances and challenges
    Xu, Guiyin
    Ding, Bing
    Pan, Jin
    Nie, Ping
    Shen, Laifa
    Zhang, Xiaogang
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (32) : 12662 - 12676
  • [4] New Development of Key Materials for High-Performance Lithium-Sulfur Batteries
    Liang Xiao
    Wen Zhaoyin
    Liu Yu
    PROGRESS IN CHEMISTRY, 2011, 23 (2-3) : 520 - 526
  • [5] Polymer Electrolytes for Lithium-Sulfur Batteries: Progress and Challenges
    Jia, Mingxun
    Li, Tunan
    Yang, Daotong
    Lu, Luhua
    Duan, Limei
    Liu, Jinghai
    Wu, Tong
    BATTERIES-BASEL, 2023, 9 (10):
  • [6] Graphdiyne nanostructure for high-performance lithium-sulfur batteries
    Wang, Fan
    Zuo, Zicheng
    Li, Liang
    He, Feng
    Li, Yuliang
    NANO ENERGY, 2020, 68
  • [7] A multifunctional separator for high-performance lithium-sulfur batteries
    Yang, Dezhi
    Zhi, Ruoyu
    Ruan, Daqian
    Yan, Wenqi
    Zhu, Yusong
    Chen, Yuhui
    Fu, Lijun
    Holze, Rudolf
    Zhang, Yi
    Wu, Yuping
    Wang, Xudong
    ELECTROCHIMICA ACTA, 2020, 334
  • [8] Targeted Electrocatalysis for High-Performance Lithium-Sulfur Batteries
    Nazir, Aqsa
    Pathak, Anil
    Hamal, Dambar
    Awadallah, Osama
    Motevalian, Saeme
    Claus, Ana
    Drozd, Vadym
    El-Zahab, Bilal
    ENERGY & ENVIRONMENTAL MATERIALS, 2025, 8 (02)
  • [9] A functional interlayer as a polysulfides blocking layer for high-performance lithium-sulfur batteries
    Yin, Lingxia
    Dou, Hui
    Wang, Aixiu
    Xu, Guiyin
    Nie, Ping
    Chang, Zhi
    Zhang, Xiaogang
    NEW JOURNAL OF CHEMISTRY, 2018, 42 (02) : 1431 - 1436
  • [10] Tri-Functional Copper Sulfide as Sulfur Carrier for High-Performance Lithium-Sulfur Batteries
    He, Deqing
    Xue, Pan
    Song, Dongdong
    Qu, Jie
    Lai, Chao
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (07) : A1499 - A1502