Development and Challenges of Functional Electrolytes for High-Performance Lithium-Sulfur Batteries

被引:164
作者
Wang, Lili [1 ]
Ye, Yusheng [1 ]
Chen, Nan [1 ]
Huang, Yongxin [1 ]
Li, Li [1 ,2 ]
Wu, Feng [1 ,2 ]
Chen, Renjie [1 ,2 ]
机构
[1] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing Key Lab Environm Sci & Engn, Beijing 100081, Peoples R China
[2] Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
electrolytes; hybrid electrolytes; liquid electrolytes; lithium-sulfur batteries; solid electrolytes; GEL-POLYMER ELECTROLYTE; LI-S BATTERY; HIGH-ENERGY DENSITY; SPARINGLY SOLVATING ELECTROLYTES; CARBONATE-BASED ELECTROLYTE; IONIC LIQUID ELECTROLYTES; ETHER-BASED ELECTROLYTES; GLYCOL) DIMETHYL ETHER; SOLID-ELECTROLYTE; ELECTROCHEMICAL PROPERTIES;
D O I
10.1002/adfm.201800919
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium-sulfur (Li-S) batteries, as one of the most important candidates of next-generation batteries, are famous for high energy density, low cost, and environmental friendly benignity. However, issues originating from polysulfide shuttle of common liquid electrolytes (e.g., capacity fade, poor cycle life, and safe issue) have hindered the applications of Li-S batteries in various occasions. This review summarizes the main efforts in the electrolytes of Li-S batteries, including liquid, solid state, and hybrid electrolyte systems. The development of functional electrolytes for Li-S batteries is hopeful to alleviate the problems Li-S batteries faced today. The liquid electrolytes circumvent the polysulfide shuttle and the resultant problems by utilizing different functional solvents, lithium salts, and additives. Solid-state electrolytes as promising electrolytes are optimized to enhance the ionic conductivity at room temperature and decrease the interfacial resistance. Hybrid electrolytes that consist of two or more single electrolytes may be considered as unique categories because they have the potential advantages than the single electrolyte systems. Challenges and perspectives of Li-S electrolytes are also proposed based on the requirement for high-performance Li-S batteries.
引用
收藏
页数:23
相关论文
共 246 条
[1]   Long term stability of Li-S batteries using high concentration lithium nitrate electrolytes [J].
Adams, Brian D. ;
Carino, Emily V. ;
Connell, Justin G. ;
Han, Kee Sung ;
Cao, Ruiguo ;
Chen, Junzheng ;
Zheng, Jianming ;
Li, Qiuyan ;
Mueller, Karl T. ;
Henderson, Wesley A. ;
Zhang, Ji-Guang .
NANO ENERGY, 2017, 40 :607-617
[2]   Stabilizing the Performance of High-Capacity Sulfur Composite Electrodes by a New Gel Polymer Electrolyte Configuration [J].
Agostini, Marco ;
Lim, Du Hyun ;
Sadd, Matthew ;
Fasciani, Chiara ;
Navarra, Maria Assunta ;
Panero, Stefania ;
Brutti, Sergio ;
Matic, Aleksandar ;
Scrosati, Bruno .
CHEMSUSCHEM, 2017, 10 (17) :3490-3496
[3]   Polysulfide-containing Glyme-based Electrolytes for Lithium Sulfur Battery [J].
Agostini, Marco ;
Xiong, Shizhao ;
Matic, Aleksandar ;
Hassoun, Jusef .
CHEMISTRY OF MATERIALS, 2015, 27 (13) :4604-4611
[4]   A lithium-sulfur battery using a solid, glass-type P2S5-Li2S electrolyte [J].
Agostini, Marco ;
Aihara, Yuichi ;
Yamada, Takanobu ;
Scrosati, Bruno ;
Hassoun, Jusef .
SOLID STATE IONICS, 2013, 244 :48-51
[5]   Improving the over-all performance of Li-S batteries via electrolyte optimization with consideration of loading condition [J].
Ai, Guo ;
Wang, Zhihui ;
Dai, Yiling ;
Mao, Wenfeng ;
Zhao, Hui ;
Fu, Yanbao ;
En, Yunfei ;
Battaglia, Vincent ;
Liu, Gao .
ELECTROCHIMICA ACTA, 2016, 218 :1-7
[6]  
Armand M, 2009, NAT MATER, V8, P621, DOI [10.1038/nmat2448, 10.1038/NMAT2448]
[7]   On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li-Sulfur Batteries [J].
Aurbach, Doron ;
Pollak, Elad ;
Elazari, Ran ;
Salitra, Gregory ;
Kelley, C. Scordilis ;
Affinito, John .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (08) :A694-A702
[8]   Additive Effect on the Electrochemical Performance of Lithium-Sulfur Battery [J].
Azimi, Nasim ;
Xue, Zheng ;
Hua, Libo ;
Takoudis, Christos ;
Zhang, Shengshui ;
Zhang, Zhengcheng .
ELECTROCHIMICA ACTA, 2015, 154 :205-210
[9]   Fluorinated Electrolytes for Li-S Battery: Suppressing the Self-Discharge with an Electrolyte Containing Fluoroether Solvent [J].
Azimi, Nasim ;
Xue, Zheng ;
Rago, Nancy Dietz ;
Takoudis, Christos ;
Gordin, Mikhail L. ;
Song, Jiangxuan ;
Wang, Donghai ;
Zhang, Zhengcheng .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (01) :A64-A68
[10]   Improved performance of lithium-sulfur battery with fluorinated electrolyte [J].
Azimi, Nasim ;
Weng, Wei ;
Takoudis, Christos ;
Zhang, Zhengcheng .
ELECTROCHEMISTRY COMMUNICATIONS, 2013, 37 :96-99