A Hardy-Type Inequality and Its Applications

被引:11
作者
Dubinskii, Yu. A. [1 ]
机构
[1] Moscow Power Engn Inst Tech Univ, Moscow 111250, Russia
基金
俄罗斯基础研究基金会;
关键词
STEKLOV Institute; Poisson Equation; Quotient Space; Hardy Inequality; Solenoidal Vector;
D O I
10.1134/S0081543810020094
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a Hardy-type inequality that provides a lower bound for the integral integral(infinity)(0) vertical bar f(r)vertical bar(p)r(p-1) dr, p > 1. In the scale of classical Hardy inequalities, this integral corresponds to the value of the exponential parameter for which neither direct nor inverse Hardy inequalities hold. However, the problem of estimating this integral and its multidimensional generalization from below arises in some practical questions. These are, for example, the question of solvability of elliptic equations in the scale of Sobolev spaces in the whole Euclidean space R(n) , some questions in the theory of Sobolev spaces, hydrodynamic problems, etc. These questions are studied in the present paper.
引用
收藏
页码:106 / 126
页数:21
相关论文
共 7 条
[1]   Decompositions of the Sobolev-Clifford Modules and Nonlinear Variational Problems [J].
Borovikova, I. A. ;
Dubinskiia, Yu. A. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2008, 260 (01) :50-67
[2]  
DUBINSKII YA, 2006, P STEKLOV I MATH, V255, P127
[3]   Hardy inequalities with exceptional parameter values and applications [J].
Dubinskii, Yu. A. .
DOKLADY MATHEMATICS, 2009, 80 (01) :558-562
[4]  
Hardy G. H., 1952, Inequalities
[5]  
Kufner A., 2007, The Hardy inequality. About its history and some related results
[6]  
SMIRNOV VI, 1959, COURSE HIGHER MATH, V5
[7]  
Temam R., 1979, NavierStokes Equations