A Hardy-Type Inequality and Its Applications

被引:11
|
作者
Dubinskii, Yu. A. [1 ]
机构
[1] Moscow Power Engn Inst Tech Univ, Moscow 111250, Russia
基金
俄罗斯基础研究基金会;
关键词
STEKLOV Institute; Poisson Equation; Quotient Space; Hardy Inequality; Solenoidal Vector;
D O I
10.1134/S0081543810020094
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a Hardy-type inequality that provides a lower bound for the integral integral(infinity)(0) vertical bar f(r)vertical bar(p)r(p-1) dr, p > 1. In the scale of classical Hardy inequalities, this integral corresponds to the value of the exponential parameter for which neither direct nor inverse Hardy inequalities hold. However, the problem of estimating this integral and its multidimensional generalization from below arises in some practical questions. These are, for example, the question of solvability of elliptic equations in the scale of Sobolev spaces in the whole Euclidean space R(n) , some questions in the theory of Sobolev spaces, hydrodynamic problems, etc. These questions are studied in the present paper.
引用
收藏
页码:106 / 126
页数:21
相关论文
共 50 条
  • [1] A Hardy-type inequality and its applications
    Yu. A. Dubinskii
    Proceedings of the Steklov Institute of Mathematics, 2010, 269 : 106 - 126
  • [2] A Hardy-type inequality in two dimensions
    Kumar, Suket
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2009, 20 (02): : 247 - 260
  • [3] Note on Sharp Hardy-Type Inequality
    Fabricant, Alexander
    Kutev, Nikolai
    Rangelov, Tsviatko
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2014, 11 (01) : 31 - 44
  • [4] On a weighted inequality for a Hardy-type operator
    D. V. Prokhorov
    Proceedings of the Steklov Institute of Mathematics, 2014, 284 : 208 - 215
  • [5] Note on Sharp Hardy-Type Inequality
    Alexander Fabricant
    Nikolai Kutev
    Tsviatko Rangelov
    Mediterranean Journal of Mathematics, 2014, 11 : 31 - 44
  • [6] Hardy-type inequality with double singular kernels
    Fabricant, Alexander
    Kutev, Nikolai
    Rangelov, Tsviatko
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2013, 11 (09): : 1689 - 1697
  • [7] A weighted Hardy type inequality and its applications
    Abreu, Emerson
    Felix, Diego Dias
    Medeiros, Everaldo
    BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 166
  • [8] A Hardy-type inequality and some spectral characterizations for the Dirac–Coulomb operator
    Biagio Cassano
    Fabio Pizzichillo
    Luis Vega
    Revista Matemática Complutense, 2020, 33 : 1 - 18
  • [9] On Hardy-type integral inequalities
    冷拓
    冯勇
    AppliedMathematicsandMechanics(EnglishEdition), 2013, 34 (10) : 1297 - 1304
  • [10] On Perturbative Hardy-Type Inequalities
    Gesztesy, Fritz
    Nichols, Roger
    Pang, Michael M. H.
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2023, 19 (01) : 128 - 149