Linearised coupling of elasticity and Navier-Stokes equations

被引:0
作者
Lasiecka, Irena [1 ]
Szulc, Katarzyna [1 ]
Zochowski, Antoni [1 ]
机构
[1] Polish Acad Sci, Syst Res Inst, Newelska 6, PL-01447 Warsaw, Poland
来源
2015 20TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR) | 2015年
关键词
Coupled Problems; Linear elasticity; Navier-Stokes equation; Topological Derivative; Shape Optimization; Numerical Methods; OPTIMIZATION; SHAPE;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the paper we consider a coupled problem of the linearly elastic body immersed in the flowing fluid which is modelled by means of incompressible Navier-Stokes equations. The approach is based on transforming the variable domain occupied by the fluid to the fixed one corresponding to the un-deformed elastic inclusion. The main idea consists in performing the linearisation of this transformation, similarly as in linear elasticity one assumes the smallness of strains. We base our approach on the observation that the gradients of the suitably defined transformation are bounded by traces of strains on the surface of the elastic body.
引用
收藏
页码:208 / 210
页数:3
相关论文
共 12 条
  • [1] A level set method in shape and topology optimization for variational inequalities
    Fulmanski, Piotr
    Laurain, Antoine
    Scheid, Jean-Francois
    Sokolowski, Jan
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2007, 17 (03) : 413 - 430
  • [2] Heywood JG, 1996, INT J NUMER METH FL, V22, P325, DOI 10.1002/(SICI)1097-0363(19960315)22:5<325::AID-FLD307>3.0.CO
  • [3] 2-Y
  • [4] TOPOLOGICAL DERIVATIVES FOR SEMILINEAR ELLIPTIC EQUATIONS
    Iguernane, Mohamed
    Nazarov, Serguei A.
    Roche, Jean-Rodolphe
    Sokolowski, Jan
    Szulc, Katarzyna
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2009, 19 (02) : 191 - 205
  • [5] Vortex control of instationary channel flows using translation invariant cost functionals
    Kasumba, H.
    Kunisch, K.
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2013, 55 (01) : 227 - 263
  • [6] Sensitivity analysis of hyperbolic optimal control problems
    Kowalewski, Adam
    Lasiecka, Irena
    Sokolowski, Jan
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2012, 52 (01) : 147 - 179
  • [7] Interface feedback control stabilization of a nonlinear fluid-structure interaction
    Lasiecka, Irena
    Lu, Yongjin
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (03) : 1449 - 1460
  • [8] Asymptotic stability of finite energy in Navier Stokes-elastic wave interaction
    Lasiecka, Irena
    Lu, Yongjin
    [J]. SEMIGROUP FORUM, 2011, 82 (01) : 61 - 82
  • [9] Existence and Exponential Decay of Solutions to a Quasilinear Thermoelastic Plate System
    Lasiecka, Irena
    Maad, Sara
    Sasane, Amol
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2008, 15 (06): : 689 - 715
  • [10] On the topological derivative in shape optimization
    Sokolowski, J
    Zochowski, A
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1999, 37 (04) : 1251 - 1272