Applications of genotyping by sequencing in aquaculture breeding and genetics

被引:212
作者
Robledo, Diego [1 ,2 ]
Palaiokostas, Christos [1 ,2 ]
Bargelloni, Luca [3 ]
Martinez, Paulino [4 ]
Houston, Ross [1 ,2 ]
机构
[1] Univ Edinburgh, Roslin Inst, Edinburgh EH25 9RG, Midlothian, Scotland
[2] Univ Edinburgh, Royal Dick Sch Vet Studies, Edinburgh EH25 9RG, Midlothian, Scotland
[3] Univ Padua, Dept Comparat Biomed & Food Sci, Padua, Italy
[4] Univ Santiago de Compostela, Fac Vet, Dept Zool Genet & Phys Anthropol, Lugo, Spain
基金
英国生物技术与生命科学研究理事会;
关键词
aquaculture; genotyping; next-generation sequencing; restriction-site associated DNA; selective breeding; single nucleotide polymorphism; SINGLE-NUCLEOTIDE POLYMORPHISMS; HIGH-DENSITY; DISEASE RESISTANCE; PROVIDES INSIGHTS; SEX DETERMINATION; GENOME SEQUENCE; DE-NOVO; TEMPERATURE TOLERANCE; LINKAGE MAPS; COMMON CARP;
D O I
10.1111/raq.12193
中图分类号
S9 [水产、渔业];
学科分类号
0908 ;
摘要
Selective breeding is increasingly recognized as a key component of sustainable production of aquaculture species. The uptake of genomic technology in aquaculture breeding has traditionally lagged behind terrestrial farmed animals. However, the rapid development and application of sequencing technologies has allowed aquaculture to narrow the gap, leading to substantial genomic resources for all major aquaculture species. While high-density single-nucleotide polymorphism (SNP) arrays for some species have been developed recently, direct genotyping by sequencing (GBS) techniques have underpinned many of the advances in aquaculture genetics and breeding to date. In particular, restriction-site associated DNA sequencing (RAD-Seq) and subsequent variations have been extensively applied to generate population-level SNP genotype data. These GBS techniques are not dependent on prior genomic information such as a reference genome assembly for the species of interest. As such, they have been widely utilized by researchers and companies focussing on nonmodel aquaculture species with relatively small research communities. Applications of RAD-Seq techniques have included generation of genetic linkage maps, performing genome-wide association studies, improvements of reference genome assemblies and, more recently, genomic selection for traits of interest to aquaculture like growth, sex determination or disease resistance. In this review, we briefly discuss the history of GBS, the nuances of the various GBS techniques, bioinformatics approaches and application of these techniques to various aquaculture species.
引用
收藏
页码:670 / 682
页数:13
相关论文
共 96 条
[81]   ezRAD: a simplified method for genomic genotyping in non-model organisms [J].
Toonen, Robert J. ;
Puritz, Jonathan B. ;
Forsman, Zac H. ;
Whitney, Jonathan L. ;
Fernandez-Silva, Iria ;
Andrews, Kimberly R. ;
Bird, Christopher E. .
PEERJ, 2013, 1
[82]   Construction and Annotation of a High Density SNP Linkage Map of the Atlantic Salmon (Salmo salar) Genome [J].
Tsai, Hsin Y. ;
Robledo, Diego ;
Lowe, Natalie R. ;
Bekaert, Michael ;
Taggart, John B. ;
Bron, James E. ;
Houston, Ross D. .
G3-GENES GENOMES GENETICS, 2016, 6 (07) :2173-2179
[83]   Genomic prediction of host resistance to sea lice in farmed Atlantic salmon populations [J].
Tsai, Hsin-Yuan ;
Hamilton, Alastair ;
Tinch, Alan E. ;
Guy, Derrick R. ;
Bron, James E. ;
Taggart, John B. ;
Gharbi, Karim ;
Stear, Michael ;
Matika, Oswald ;
Pong-Wong, Ricardo ;
Bishop, Steve C. ;
Houston, Ross D. .
GENETICS SELECTION EVOLUTION, 2016, 48
[84]   Genome wide association and genomic prediction for growth traits in juvenile farmed Atlantic salmon using a high density SNP array [J].
Tsai, Hsin-Yuan ;
Hamilton, Alastair ;
Tinch, Alan E. ;
Guy, Derrick R. ;
Gharbi, Karim ;
Stear, Michael J. ;
Matika, Oswald ;
Bishop, Steve C. ;
Houston, Ross D. .
BMC GENOMICS, 2015, 16
[85]   Evaluation of Genome-Enabled Selection for Bacterial Cold Water Disease Resistance Using Progeny Performance Data in Rainbow Trout: Insights on Genotyping Methods and Genomic Prediction Models [J].
Vallejo, Roger L. ;
Leeds, Timothy D. ;
Fragomeni, Breno O. ;
Gao, Guangtu ;
Hernandez, Alvaro G. ;
Misztal, Ignacy ;
Welch, Timothy J. ;
Wiens, Gregory D. ;
Palti, Yniv .
FRONTIERS IN GENETICS, 2016, 7
[86]   Parentage assignment with genomic markers: a major advance for understanding and exploiting genetic variation of quantitative traits in farmed aquatic animals [J].
Vandeputte, Marc ;
Haffray, Pierrick .
FRONTIERS IN GENETICS, 2014, 5
[87]   Chromosomal-Level Assembly of the Asian Seabass Genome Using Long Sequence Reads and Multi-layered Scaffolding [J].
Vij, Shubha ;
Kuhl, Heiner ;
Kuznetsova, Inna S. ;
Komissarov, Aleksey ;
Yurchenko, Andrey A. ;
Van Heusden, Peter ;
Singh, Siddharth ;
Thevasagayam, Natascha M. ;
Prakki, Sai Rama Sridatta ;
Purushothaman, Kathiresan ;
Saju, Jolly M. ;
Jiang, Junhui ;
Mbandi, Stanley Kimbung ;
Jonas, Mario ;
Tong, Amy Hin Yan ;
Mwangi, Sarah ;
Lau, Doreen ;
Ngoh, Si Yan ;
Liew, Woei Chang ;
Shen, Xueyan ;
Hon, Lawrence S. ;
Drake, James P. ;
Boitano, Matthew ;
Hall, Richard ;
Chin, Chen-Shan ;
Lachumanan, Ramkumar ;
Korlach, Jonas ;
Trifonov, Vladimir ;
Kabilov, Marsel ;
Tupikin, Alexey ;
Green, Darrell ;
Moxon, Simon ;
Garvin, Tyler ;
Sedlazeck, Fritz J. ;
Vurture, Gregory W. ;
Gopalapillai, Gopikrishna ;
Katneni, Vinaya Kumar ;
Noble, Tansyn H. ;
Scaria, Vinod ;
Sivasubbu, Sridhar ;
Jerry, Dean R. ;
O'Brien, Stephen J. ;
Schatz, Michael C. ;
Dalmay, Tamas ;
Turner, Stephen W. ;
Lok, Si ;
Christoffels, Alan ;
Orban, Laszlo .
PLOS GENETICS, 2016, 12 (04)
[88]   Estimating genotype error rates from high-coverage next-generation sequence data [J].
Wall, Jeffrey D. ;
Tang, Ling Fung ;
Zerbe, Brandon ;
Kvale, Mark N. ;
Kwok, Pui-Yan ;
Schaefer, Catherine ;
Risch, Neil .
GENOME RESEARCH, 2014, 24 (11) :1734-1739
[89]   Construction of a high-density linkage map and fine mapping of QTL for growth in Asian seabass [J].
Wang, Le ;
Wan, Zi Yi ;
Bai, Bin ;
Huang, Shu Qing ;
Chua, Elaine ;
Lee, May ;
Pang, Hong Yan ;
Wen, Yan Fei ;
Liu, Peng ;
Liu, Feng ;
Sun, Fei ;
Lin, Grace ;
Ye, Bao Qing ;
Yue, Gen Hua .
SCIENTIFIC REPORTS, 2015, 5
[90]  
Wang S, 2012, NAT METHODS, V9, P808, DOI [10.1038/nmeth.2023, 10.1038/NMETH.2023]