Maxwell's equations in the context of the Fock transformation and the magnetic monopole

被引:6
作者
Takka, N. [1 ]
Bouda, A. [1 ]
Foughali, T. [1 ]
机构
[1] Univ Bejaia, Fac Sci Exactes, Lab Phys Theor, Bejaia 06000, Algeria
关键词
Fock's transformation; R-Minkowski space-time; Maxwell's equations; R-Lorentz algebra; Dirac's monopole; FEYNMAN PROOF; RELATIVITY;
D O I
10.1139/cjp-2016-0717
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the R-Minkowski space-time, which we recently defined from an appropriate deformed Poisson brackets that reproduce the Fock coordinate transformation, we derive an extended form for Maxwell's equations by using a generalized version of Feynman's approach. Also, we establish in this context the Lorentz force. As in deformed special relativity, modifying the angular momentum in such a way as to restore the R-Lorentz algebra generates the magnetic Dirac monopole.
引用
收藏
页码:987 / 992
页数:6
相关论文
共 50 条
  • [21] Virtual elements for Maxwell's equations
    da Veiga, L. Beirao
    Dassi, F.
    Manzini, G.
    Mascotto, L.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 116 : 82 - 99
  • [22] Wavelets for the Maxwell's equations: An overview
    Amat, Sergio
    Blazquez, Pedro J.
    Busquier, Sonia
    Bermudez, Concepcion
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 321 : 555 - 565
  • [23] Maxwell's equations instantaneous Hamiltonian
    Kulyabov, D. S.
    Korolkova, A. V.
    Sevastianov, L. A.
    Eferina, E. G.
    Velieva, T. R.
    Zaryadov, I. S.
    SARATOV FALL MEETING 2016 - LASER PHYSICS AND PHOTONICS XVII; AND COMPUTATIONAL BIOPHYSICS AND ANALYSIS OF BIOMEDICAL DATA III, 2017, 10337
  • [24] Braidings and Quantizations of Maxwell's Equations
    Huru, H.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2015, 36 (03) : 250 - 259
  • [25] Maxwell's Equations, Fields or Potentials?
    Gersten, Alexander
    Moalem, Amnon
    11TH BIENNIAL CONFERENCE ON CLASSICAL AND QUANTUM RELATIVISTIC DYNAMICS OF PARTICLES AND FIELDS, 2019, 1239
  • [26] Complex solutions to Maxwell’s equations
    Munshi S.
    Yang R.
    Complex Analysis and its Synergies, 2022, 8 (1)
  • [27] On the semistatic limit for Maxwell's equations
    Jochmann, F
    PARTIAL DIFFERENTIAL EQUATIONS: THEORY AND NUMERICAL SOLUTION, 2000, 406 : 187 - 198
  • [28] Reducing Maxwell's Equations to Gauss's Law
    Rebilas, Krzysztof
    PHYSICS ESSAYS, 2006, 19 (03) : 434 - 445
  • [29] An inverse cavity problem for Maxwell's equations
    Li, Peijun
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (04) : 3209 - 3225
  • [30] Explicit Splitting Scheme for Maxwell’s Equations
    Mingalev I.V.
    Mingalev O.V.
    Akhmetov O.I.
    Suvorova Z.V.
    Mathematical Models and Computer Simulations, 2019, 11 (4) : 551 - 563