Intracellular Targeting of Poly Lactic-Co-Glycolic Acid Nanoparticles by Surface Functionalization with Peptides

被引:9
|
作者
de Oliveira, Thais Dolzany [1 ]
Travassos, Luiz R. [2 ]
Arruda, Denise Costa [1 ]
Tada, Dayane Batista [3 ]
机构
[1] Univ Mogi das Cruzes, UMC, Integrated Grp Biotechnol, BR-08780911 Mogi Das Cruzes, SP, Brazil
[2] Fed Univ Sao Paulo UNIFESP, Expt Oncol Unit UNONEX, BR-04023062 Sao Paulo, SP, Brazil
[3] Univ Fed Sao Paulo, Inst Sci & Technol, BR-12231280 Sao Jose Dos Campos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Drug Delivery; Nanocarriers; PLGA; CPPs; Melanoma; Intracellular Target-Socific; PLGA-BASED NANOPARTICLES; CELLULAR UPTAKE; DELIVERY; DRUG; ENDOCYTOSIS; MECHANISM;
D O I
10.1166/jbn.2021.3108
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Nanoparticles (NPs) are a promising strategy for delivering drugs to specific sites because of their tunable size and surface chemistry variety. Among the available materials, NPs prepared with biopolymers are of particular interest because of their biocompatibility and controlled release of encapsulated drugs. Poly lactic-co-glycolic acid (PLGA) is one of the most widely used biopolymers in biomedical applications. In addition to material choice modulation of the interaction between NPs and biological systems is essential for the safety and effective use of NPs. Therefore, this work focused on evaluating different surface functionalization strategies to promote cancer cell uptake and intracellular targeting of PLGA NPs. Herein, cell-penetrating peptides (CPPs) were shown to successfully drive PLGA NPs to the mitochondria and nuclei. Furthermore, the functionalization of PLGA NPs with peptide AC-1001 H3 (GQYGNLWFAY) was proven to be useful for targeting actin filaments. The PLGA NPs cell internalization mechanism by B16F10-Nex2 cells was identified as caveolae-mediated endocytosis, which could be inhibited by the presence of methyl-/3-cyclodextrin. Notably, when peptide IP: 14.98 160.66 O M 30 Aug 2021 11 0023 C (CVNHPAFAC) was used to functionalize PLGA NPs, none of the tested inhibitors could avoid cell internalization of Copyright: Amercan Scientiic Publishers PLGA NPs. Therefore, we suggest this peptide asa promising surface modification agent for enhancing drug delivery to Delivered by Ingena cancer cells. Finally, PLGA NPs showed slow release kinetics and low cytotoxic profile, which, combined with the surface functionalization strategies addressed in this study, highlight the potential of PLGA NPs as a drug delivery platform for improving cancer therapy.
引用
收藏
页码:1320 / 1329
页数:10
相关论文
共 50 条
  • [1] Intracellular Drug Delivery by Poly(lactic-co-glycolic acid) Nanoparticles, Revisited
    Xu, Peisheng
    Gullotti, Emily
    Tong, Ling
    Highley, Christopher B.
    Errabelli, Divya R.
    Hasan, Tayyaba
    Cheng, Ji-Xin
    Kohane, Daniel S.
    Yeo, Yoon
    MOLECULAR PHARMACEUTICS, 2009, 6 (01) : 190 - 201
  • [2] Targeting of sialoadhesin-expressing macrophages through antibody-conjugated (polyethylene glycol) poly(lactic-co-glycolic acid) nanoparticles
    Van Hees, Sofie
    Elbrink, Kimberley
    De Schryver, Marjorie
    Delputte, Peter
    Kiekens, Filip
    JOURNAL OF NANOPARTICLE RESEARCH, 2022, 24 (03)
  • [3] Preparation and evaluation of hypocrellin A loaded poly(lactic-co-glycolic acid) nanoparticles for photodynamic therapy
    Qi, Shan-Shan
    Lin, Xi
    Zhang, Miao-Miao
    Yan, Shu-Zhen
    Yu, Shu-Qin
    Chen, Shuang-Lin
    RSC ADVANCES, 2014, 4 (75): : 40085 - 40094
  • [4] Magnetic targeting of paclitaxel-loaded poly(lactic-co-glycolic acid)-based nanoparticles for the treatment of glioblastoma
    Ganipineni, Lakshmi Pallavi
    Ucakar, Bernard
    Joudiou, Nicolas
    Bianco, John
    Danhier, Pierre
    Zhao, Mengnan
    Bastiancich, Chiara
    Gallez, Bernard
    Danhier, Fabienne
    Preat, Veronique
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2018, 13 : 4509 - 4521
  • [5] Enhanced sucrose-mediated cryoprotection of siRNA-loaded poly (lactic-co-glycolic acid) nanoparticles
    Youm, Ibrahima
    West, Matthew B.
    Huang, Xiangping
    Li, Wei
    Kopke, Richard D.
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2022, 220
  • [6] Properties of Poly (Lactic-co-Glycolic Acid) and Progress of Poly (Lactic-co-Glycolic Acid)-Based Biodegradable Materials in Biomedical Research
    Lu, Yue
    Cheng, Dongfang
    Niu, Baohua
    Wang, Xiuzhi
    Wu, Xiaxia
    Wang, Aiping
    PHARMACEUTICALS, 2023, 16 (03)
  • [7] Poly(lactic-co-glycolic acid) encapsulated platinum nanoparticles for cancer treatment
    Ruiz, Aida Lopez
    Arribas, Evaristo Villaseco
    McEnnis, Kathleen
    MATERIALS ADVANCES, 2022, 3 (06): : 2858 - 2870
  • [8] Interaction of poly(lactic-co-glycolic acid) nanoparticles at fluid interfaces
    Gyulai, Gergo
    Kiss, Eva
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2017, 500 : 9 - 19
  • [9] Emerging trends in Poly(lactic-co-glycolic) acid bionanoarchitectures and applications
    Idumah, Christopher Igwe
    CLEANER MATERIALS, 2022, 5
  • [10] Comparative cellular toxicity between silver and poly (lactic-co-glycolic acid) nanoparticles
    Chaves, Marlos de Medeiros
    Moura, Afonso Luiz Dantas
    de Sousa, Jeanlex Soares
    Ferreira, Odair Pastor
    Saraiva, Karina Lidiane Alcantara
    Miguel, Emilio de Castro
    Savino, Wilson
    Nicolete, Roberto
    TOXIN REVIEWS, 2024,