Micro-nanostructured CuO/C spheres as high-performance anode materials for Na-ion batteries

被引:122
|
作者
Lu, Yanying [1 ]
Zhang, Ning [1 ]
Zhao, Qing [1 ]
Liang, Jing [1 ]
Chen, Jun [1 ]
机构
[1] Nankai Univ, Minist Educ, Key Lab Adv Energy Mat Chem, Collaborat Innovat Ctr Chem Sci & Engn, Tianjin 300071, Peoples R China
关键词
ELECTROCHEMICAL PERFORMANCE; FACILE FABRICATION; CARBON NANOFIBERS; ENERGY-STORAGE; POROUS CARBON; GAS-SENSOR; LONG-LIFE; LITHIUM; NANOCOMPOSITES; MORPHOLOGY;
D O I
10.1039/c4nr06432a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this paper, we report on the synthesis of micro-nanostructured CuO/C spheres by aerosol spray pyrolysis and their application as high-performance anodes in sodium-ion batteries. Micro-nanostructured CuO/C spheres with different CuO contents were synthesized through aerosol spray pyrolysis by adjusting the ratio of reactants and heat-treated by an oxidation process. The as-prepared CuO/C spheres show uniformly spherical morphology, in which CuO nanoparticles (similar to 10 nm) are homogeneously embedded in the carbon matrix (denoted as 10-CuO/C). The electrochemical performance of 10-CuO/C with a carbon weight of 44% was evaluated as the anode material for Na-ion batteries. It can deliver a capacity of 402 mA h g(-1) after 600 cycles at a current density of 200 mA g(-1). Furthermore, a capacity of 304 mA h g(-1) was obtained at a high current density of 2000 mA g(-1). The superior electrochemical performance of the micro-nanostructured CuO/C spheres leads to the enhancement of the electronic conductivity of the nanocomposite and the accommodation of the volume variation of CuO/C during charge/discharge cycling.
引用
收藏
页码:2770 / 2776
页数:7
相关论文
共 50 条
  • [1] CuS Microspheres as High-Performance Anode Material for Na-ion Batteries
    Li, He
    Wang, Yunhui
    Jiang, Jiali
    Zhang, Yiyong
    Peng, Yueying
    Zhao, Jinbao
    ELECTROCHIMICA ACTA, 2017, 247 : 851 - 859
  • [2] FeSe2 Microspheres as a High-Performance Anode Material for Na-Ion Batteries
    Zhang, Kai
    Hu, Zhe
    Liu, Xue
    Tao, Zhanliang
    Chen, Jun
    ADVANCED MATERIALS, 2015, 27 (21) : 3305 - 3309
  • [3] A novel Tetrahexcarbon as a high-performance anode material for Na-ion and K-ion batteries
    Ma, Shihao
    Zhang, Hui
    Cheng, Zishuang
    Xie, Xinjian
    Zhang, Xiaoming
    Liu, Guodong
    Chen, Guifeng
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 684
  • [4] Colloidal Antimony Sulfide Nanoparticles as a High-Performance Anode Material for Li-ion and Na-ion Batteries
    Kravchyk, Kostiantyn, V
    Kovalenko, Maksym, V
    Bodnarchuk, Maryna, I
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [5] Porous CuO nanowires as the anode of rechargeable Na-ion batteries
    Wang, Lijiang
    Zhang, Kai
    Hu, Zhe
    Duan, Wenchao
    Cheng, Fangyi
    Chen, Jun
    NANO RESEARCH, 2014, 7 (02) : 199 - 208
  • [6] Current advancement on anode materials for Na-ion batteries: Review
    Saritha, D.
    Sandeep, C. H.
    Sujithra, R.
    MATERIALS TODAY-PROCEEDINGS, 2022, 62 : 3022 - 3026
  • [7] Spatial Effect on the Performance of Carboxylate Anode Materials in Na-Ion Batteries
    Huang, Jinghao
    Li, Shi
    Wang, You
    Kim, Eric Youngsam
    Yang, Zhenzhen
    Chen, Dongchang
    Cheng, Lei
    Luo, Chao
    SMALL, 2024, 20 (14)
  • [8] Hierarchical Vanadium Pentoxide Spheres as High-Performance Anode Materials for Sodium-Ion Batteries
    Su, Dawei
    Dou, Shixue
    Wang, Guoxiu
    CHEMSUSCHEM, 2015, 8 (17) : 2877 - 2882
  • [9] Cobalt sulfides/dodecahedral porous carbon as anode materials for Na-ion batteries
    Zhang, Zhian
    Gan, Yongqing
    Lai, Yanqing
    Shi, Xiaodong
    Chen, Wei
    Li, Jie
    RSC ADVANCES, 2015, 5 (125): : 103410 - 103413
  • [10] SnS2 Nanosheets with RGO Modification as High-Performance Anode Materials for Na-Ion and K-Ion Batteries
    Wu, Leqiang
    Shao, Hengjia
    Yang, Chen
    Feng, Xiangmin
    Han, Linxuan
    Zhou, Yanli
    Du, Wei
    Sun, Xueqin
    Xu, Zhijun
    Zhang, Xiaoyu
    Jiang, Fuyi
    Dong, Caifu
    NANOMATERIALS, 2021, 11 (08)