Oxidative stress in severe acute illness

被引:127
作者
Bar-Or, David [1 ,2 ,3 ]
Bar-Or, Raphael [1 ,2 ,3 ]
Rael, Leonard T. [1 ,2 ,3 ]
Brody, Edward N. [4 ]
机构
[1] Swedish Med Ctr, Englewood, CO 80113 USA
[2] St Anthony Hosp, Lakewood, CO USA
[3] Med Ctr Plano, Plano, TX USA
[4] SomaLogic Inc, Boulder, CO USA
关键词
Malondialdehyde; 4-Hydroxynonenal; Oxidation reduction potential; Traumatic brain injury; Superoxide dismutase; Hypoxia-inducible factor 1; TRAUMATIC BRAIN-INJURY; ACUTE ISCHEMIC-STROKE; POLYNUCLEOTIDE PHOSPHORYLASE PROTEIN; MYOCARDIAL-INFARCTION; CEREBROSPINAL-FLUID; LIPID-PEROXIDATION; ANTIOXIDANT STATUS; REDOX STATE; PLASMA; SEPSIS;
D O I
10.1016/j.redox.2015.01.006
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The overall redox potential of a cell is primarily determined by oxidizable/reducible chemical pairs, including glutathione-glutathione disulfide, reduced thioredoxin-oxidized thioredoxin, and NAD(+)-NADH (and NADP-NADPH). Current methods for evaluating oxidative stress rely on detecting levels of individual byproducts of oxidative damage or by determining the total levels or activity of individual antioxidant enzymes. Oxidation-reduction potential (ORP), on the other hand, is an integrated, comprehensive measure of the balance between total (known and unknown) pro-oxidant and antioxidant components in a biological system. Much emphasis has been placed on the role of oxidative stress in chronic diseases, such as Alzheimer's disease and atherosclerosis. The role of oxidative stress in acute diseases often seen in the emergency room and intensive care unit is considerable. New tools for the rapid, inexpensive measurement of both redox potential and total redox capacity should aid in introducing a new body of literature on the role of oxidative stress in acute illness and how to screen and monitor for potentially beneficial pharmacologic agents. (C) 2015 The Authors. Published by Elsevier B.V.
引用
收藏
页码:340 / 345
页数:6
相关论文
共 47 条
[21]   Redox state of glutathione in human plasma [J].
Jones, DP ;
Carlson, JL ;
Mody, VC ;
Cai, JY ;
Lynn, MJ ;
Sternberg, P .
FREE RADICAL BIOLOGY AND MEDICINE, 2000, 28 (04) :625-635
[22]  
Jurcau A., 2007, ROM J NEUROL, V6, P181
[23]   4-hydroxynonenal, an aldehydic product of membrane lipid peroxidation, impairs glutamate transport and mitochondrial function in synaptosomes [J].
Keller, JN ;
Mark, RJ ;
Bruce, AJ ;
Blanc, E ;
Rothstein, JD ;
Uchida, K ;
Waeg, G ;
Mattson, MP .
NEUROSCIENCE, 1997, 80 (03) :685-696
[24]   Diabetes increases mortality after myocardial infarction by oxidizing CaMKII [J].
Luo, Min ;
Guan, Xiaoqun ;
Luczak, Elizabeth D. ;
Lang, Di ;
Kutschke, William ;
Gao, Zhan ;
Yang, Jinying ;
Glynn, Patric ;
Sossalla, Samuel ;
Swaminathan, Paari D. ;
Weiss, Robert M. ;
Yang, Baoli ;
Rokita, Adam G. ;
Maier, Lars S. ;
Efimov, Igor R. ;
Hund, Thomas J. ;
Anderson, Mark A. .
JOURNAL OF CLINICAL INVESTIGATION, 2013, 123 (03) :1262-1274
[25]   Peroxiredoxin VI oxidation in cerebrospinal fluid correlates with traumatic brain injury outcome [J].
Manevich, Y. ;
Hutchens, S. ;
Halushka, P. V. ;
Tew, K. D. ;
Townsend, D. M. ;
Jauch, E. C. ;
Borg, K. .
FREE RADICAL BIOLOGY AND MEDICINE, 2014, 72 :210-221
[26]   Modification of ion homeostasis by lipid peroxidation: roles in neuronal degeneration and adaptive plasticity [J].
Mattson, MP .
TRENDS IN NEUROSCIENCES, 1998, 21 (02) :53-57
[27]   Global analysis of RNA oxidation in Saccharomyces cerevisiae [J].
McKinlay, Anastasia ;
Gerard, Wayne ;
Fields, Stanley .
BIOTECHNIQUES, 2012, 52 (02) :109-111
[28]   How mitochondria produce reactive oxygen species [J].
Murphy, Michael P. .
BIOCHEMICAL JOURNAL, 2009, 417 :1-13
[29]   Redox regulation in the extracellular environment [J].
Ottaviano, Filomena G. ;
Handy, Diane E. ;
Loscalzo, Joseph .
CIRCULATION JOURNAL, 2008, 72 (01) :1-16
[30]   Mobilization of antioxidant vitamin pools and hemodynamic function after myocardial infarction [J].
Palace, VP ;
Hill, MF ;
Farahmand, F ;
Singal, PK .
CIRCULATION, 1999, 99 (01) :121-126