ON MULTIVARIATE FRACTIONAL BROWNIAN MOTION AND MULTIVARIATE FRACTIONAL GAUSSIAN NOISE

被引:0
作者
Coeurjolly, Jean-Francois [1 ]
Amblard, Pierre-Olivier [1 ]
Achard, Sophie [1 ]
机构
[1] CNRS, UMR 5216, GIPSAlab, F-38402 St Martin Dheres, France
来源
18TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO-2010) | 2010年
关键词
SIMULATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Following recent works from Lavancier et. al., we study the covariance structure of the multivariate fractional Gaussian noise. We evaluate several parameters of the model that allow to control the correlation structure at lag zero between all the components of the multivariate process. Then, we specify an algorithm that allows the exact simulation of multivariate fractional Gaussian noises and thus fractional Brownian motions. Illustrations involve the estimation of the Hurst exponents of each of the components.
引用
收藏
页码:1567 / 1571
页数:5
相关论文
共 12 条
[1]   A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs [J].
Achard, S ;
Salvador, R ;
Whitcher, B ;
Suckling, J ;
Bullmore, ET .
JOURNAL OF NEUROSCIENCE, 2006, 26 (01) :63-72
[2]   Fractal connectivity of long-memory networks [J].
Achard, Sophie ;
Bassett, Danielle S. ;
Meyer-Lindenberg, Andreas ;
Bullmore, Edward T. .
PHYSICAL REVIEW E, 2008, 77 (03)
[3]   Simulation of stationary Gaussian vector fields [J].
Chan, G ;
Wood, ATA .
STATISTICS AND COMPUTING, 1999, 9 (04) :265-268
[4]  
Coeurjolly J-F., 2001, Stat. Inference for Stoch. Proc, V4, P199, DOI [DOI 10.1023/A:1017507306245, 10.1023/A:1017507306245]
[5]   Simulating a class of stationary Gaussian processes using the Davies-Harte algorithm, with application to long memory processes [J].
Craigmile, PF .
JOURNAL OF TIME SERIES ANALYSIS, 2003, 24 (05) :505-511
[6]  
Didier G., 2009, PREPRINT
[7]   Fast and exact simulation of stationary Gaussian processes through circulant embedding of the covariance matrix [J].
Dietrich, CR ;
Newsam, GN .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1997, 18 (04) :1088-1107
[8]  
Lavancier F., 2009, STAT PROBABILITY LET
[9]   FRACTIONAL BROWNIAN MOTIONS FRACTIONAL NOISES AND APPLICATIONS [J].
MANDELBROT, BB ;
VANNESS, JW .
SIAM REVIEW, 1968, 10 (04) :422-+
[10]   How rich is the class of multifractional Brownian motions? [J].
Stoev, SA ;
Taqqu, MS .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2006, 116 (02) :200-221