Design of a nanoscale silicon laser

被引:29
|
作者
Jaiswal, SL [1 ]
Simpson, JT
Withrow, SP
White, CW
Norris, PM
机构
[1] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[2] Univ Virginia, Charlottesville, VA USA
来源
关键词
D O I
10.1007/s00339-003-2093-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The recent observation of optical gain from silicon nanocrystals embedded in SiO2 opens an opportunity to develop a nanoscale silicon-based laser. However, the challenge remains to design and develop a laser architecture using CMOS-compatible materials. In this paper we present two designs for a waveguide laser in which silicon nanocrystals embedded in SiO2 are used as the optical gain media. One design employs a SiO2 membrane containing encapsulated Si nanocrystals. Preliminary calculations given here show that a highly resonant laser cavity can be produced in a SiO2 membrane using sub-wavelenath structures. This photonic crystal architecture, used to guide and contain the light, can be combined with a gain medium of optically active Si nanocrystals synthesized in the SiO2 membrane using ion implantation/thermal annealing to produce a Si-based laser. The laser cavity dimensions can be matched to the near-infrared wavelengths where optical gain has been observed from Si nanocrystals. The second design utilizes silicon nanocrystals embedded in a distributed-feedback laser cavity fabricated in SiO2. Lasing action over a broad wavelength range centered at similar to 770 nm should be possible in both of these configurations.
引用
收藏
页码:57 / 61
页数:5
相关论文
共 50 条
  • [41] Silicon Technologies for Nanoscale Device Packaging
    Thuaire, Aurelie
    Le Gac, Gaelle
    Audoit, Guillaume
    Aussenac, Francois
    Rauer, Caroline
    Rolland, Emmanuel
    Hartmann, Jean-Michel
    Charvet, Anne-Marie
    Moriceau, Hubert
    Rivallin, Pierrette
    Reynaud, Patrick
    Cheramy, Severine
    Sillon, Nicolas
    Baillin, Xavier
    NANOPACKAGING: FROM NANOMATERIALS TO THE ATOMIC SCALE, 2015, : 113 - 135
  • [42] Nanoscale oxidation of silicon microring resonators
    Shen, Yiran
    Mookherjea, Shayan
    2011 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2011,
  • [43] Nanoscale Plasmonic Stamp Lithography on Silicon
    Liu, Fenglin
    Luber, Erik J.
    Huck, Lawrence A.
    Olsen, Brian C.
    Buriak, Jillian M.
    ACS NANO, 2015, 9 (02) : 2184 - 2193
  • [44] High strength and ductility of titanium matrix composites by nanoscale design in selective laser melting
    Joseph A.Otte
    Jin Zou
    Matthew S.Dargusch
    JournalofMaterialsScience&Technology, 2022, 118 (23) : 114 - 127
  • [45] High strength and ductility of titanium matrix composites by nanoscale design in selective laser melting
    Otte, Joseph A.
    Zou, Jin
    Dargusch, Matthew S.
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 118 : 114 - 127
  • [46] Simulation of nanoscale silicon conduction channels
    Trellakis, A
    Ravaioli, U
    PROCEEDINGS OF THE FIFTH INTERNATIONAL SYMPOSIUM ON QUANTUM CONFINEMENT: NANOSTRUCTURES, 1999, 98 (19): : 551 - 562
  • [47] Silicon epitaxy in nanoscale for photovoltaic applications
    Yoo, Jinkyoung
    Binh-Minh Nguyen
    Dayeh, Shadi A.
    Schuele, Paul
    Evans, David
    Picraux, S. T.
    NANOEPITAXY: MATERIALS AND DEVICES VI, 2014, 9174
  • [48] Strength of silicon containing nanoscale flaws
    Antonia Pajares
    Marina Chumakov
    Brian R. Lawn
    Journal of Materials Research, 2004, 19 : 657 - 660
  • [49] FIB processing of silicon in the nanoscale regime
    A. Lugstein
    B. Basnar
    J. Smoliner
    E. Bertagnolli
    Applied Physics A, 2003, 76 : 545 - 548
  • [50] FIB processing of silicon in the nanoscale regime
    Lugstein, A
    Basnar, B
    Smoliner, J
    Bertagnolli, E
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2003, 76 (04): : 545 - 548