Design of a nanoscale silicon laser

被引:29
|
作者
Jaiswal, SL [1 ]
Simpson, JT
Withrow, SP
White, CW
Norris, PM
机构
[1] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[2] Univ Virginia, Charlottesville, VA USA
来源
关键词
D O I
10.1007/s00339-003-2093-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The recent observation of optical gain from silicon nanocrystals embedded in SiO2 opens an opportunity to develop a nanoscale silicon-based laser. However, the challenge remains to design and develop a laser architecture using CMOS-compatible materials. In this paper we present two designs for a waveguide laser in which silicon nanocrystals embedded in SiO2 are used as the optical gain media. One design employs a SiO2 membrane containing encapsulated Si nanocrystals. Preliminary calculations given here show that a highly resonant laser cavity can be produced in a SiO2 membrane using sub-wavelenath structures. This photonic crystal architecture, used to guide and contain the light, can be combined with a gain medium of optically active Si nanocrystals synthesized in the SiO2 membrane using ion implantation/thermal annealing to produce a Si-based laser. The laser cavity dimensions can be matched to the near-infrared wavelengths where optical gain has been observed from Si nanocrystals. The second design utilizes silicon nanocrystals embedded in a distributed-feedback laser cavity fabricated in SiO2. Lasing action over a broad wavelength range centered at similar to 770 nm should be possible in both of these configurations.
引用
收藏
页码:57 / 61
页数:5
相关论文
共 50 条
  • [31] Silicon and zinc telluride nanoparticles synthesized by pulsed laser ablation: Size distributions and nanoscale structure
    Lowndes, Douglas H.
    Rouleau, Christopher M.
    Thundat, T.
    Duscher, G.
    Kenik, E.A.
    Pennycook, S.J.
    Applied Surface Science, 1998, 127-129 : 355 - 361
  • [32] Modeling Carrier-Phonon Nonequilibrium Due to Pulsed Laser Interaction With Nanoscale Silicon Films
    Pattamatta, Arvind
    Madnia, Cyrus K.
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2010, 132 (08): : 1 - 9
  • [33] Non-periodic nanoscale structuring of crystalline silicon surface by using ultrashort laser pulses
    Kim, Byunggi
    Nam, Han Ku
    Ryu, Jeongchun
    Kim, Young-Jin
    Kim, Seung-Woo
    APPLIED SURFACE SCIENCE, 2021, 565
  • [34] Silicon and zinc telluride nanoparticles synthesized by pulsed laser ablation: size distributions and nanoscale structure
    Lowndes, DH
    Rouleau, CM
    Thundat, T
    Duscher, G
    Kenik, EA
    Pennycook, SJ
    APPLIED SURFACE SCIENCE, 1998, 127 : 355 - 361
  • [35] Formation of nanoscale fine-structured silicon by pulsed laser ablation in hydrogen background gas
    Umezu, Ikurou
    Sugimura, Akira
    Inada, Mitsuru
    Makino, Toshiharu
    Matsumoto, Kimihisa
    Takata, Masatoshi
    PHYSICAL REVIEW B, 2007, 76 (04):
  • [36] Design of unidirectional emission silicon/Ⅲ-Ⅴ laser for on-chip interconnects
    Chucai GUO
    Yongzhen HUANG
    Yuede YANG
    Xiaomeng LV
    Qifeng YAO
    Frontiers of Optoelectronics, 2012, 5 (01) : 94 - 98
  • [37] Thermometer design at the nanoscale
    Lee, Jaebeom
    Kotov, Nicholas A.
    NANO TODAY, 2007, 2 (01) : 48 - 51
  • [38] Design of a novel nanoscale high-performance phase-change silicon photonic switch
    Ali, Nadir
    Kumar, Rajesh
    PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS, 2018, 32 : 81 - 85
  • [39] Design for Nanoscale Patterning
    Gupta, Puneet
    2013 IEEE CUSTOM INTEGRATED CIRCUITS CONFERENCE (CICC), 2013,
  • [40] The wetting of gold and silicon nanoscale arrays
    Meli, Maria-Victoria
    Lennox, R. Bruce
    LANGMUIR, 2007, 23 (04) : 1619 - 1622