Design of a nanoscale silicon laser

被引:29
作者
Jaiswal, SL [1 ]
Simpson, JT
Withrow, SP
White, CW
Norris, PM
机构
[1] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[2] Univ Virginia, Charlottesville, VA USA
来源
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING | 2003年 / 77卷 / 01期
关键词
D O I
10.1007/s00339-003-2093-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The recent observation of optical gain from silicon nanocrystals embedded in SiO2 opens an opportunity to develop a nanoscale silicon-based laser. However, the challenge remains to design and develop a laser architecture using CMOS-compatible materials. In this paper we present two designs for a waveguide laser in which silicon nanocrystals embedded in SiO2 are used as the optical gain media. One design employs a SiO2 membrane containing encapsulated Si nanocrystals. Preliminary calculations given here show that a highly resonant laser cavity can be produced in a SiO2 membrane using sub-wavelenath structures. This photonic crystal architecture, used to guide and contain the light, can be combined with a gain medium of optically active Si nanocrystals synthesized in the SiO2 membrane using ion implantation/thermal annealing to produce a Si-based laser. The laser cavity dimensions can be matched to the near-infrared wavelengths where optical gain has been observed from Si nanocrystals. The second design utilizes silicon nanocrystals embedded in a distributed-feedback laser cavity fabricated in SiO2. Lasing action over a broad wavelength range centered at similar to 770 nm should be possible in both of these configurations.
引用
收藏
页码:57 / 61
页数:5
相关论文
共 20 条
[1]   SILICON QUANTUM WIRE ARRAY FABRICATION BY ELECTROCHEMICAL AND CHEMICAL DISSOLUTION OF WAFERS [J].
CANHAM, LT .
APPLIED PHYSICS LETTERS, 1990, 57 (10) :1046-1048
[2]   Photoluminescence and electroluminescence from porous silicon [J].
Fauchet, PM .
JOURNAL OF LUMINESCENCE, 1996, 70 :294-309
[3]   Photonic-bandgap microcavities in optical waveguides [J].
Foresi, JS ;
Villeneuve, PR ;
Ferrera, J ;
Thoen, ER ;
Steinmeyer, G ;
Fan, S ;
Joannopoulos, JD ;
Kimerling, LC ;
Smith, HI ;
Ippen, EP .
NATURE, 1997, 390 (6656) :143-145
[4]   PHOTOLUMINESCENCE OF SI-RICH SIO2-FILMS - SI CLUSTERS AS LUMINESCENT CENTERS [J].
HAYASHI, S ;
NAGAREDA, T ;
KANZAWA, Y ;
YAMAMOTO, K .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1993, 32 (9A) :3840-3845
[5]   Excitation and de-excitation properties of silicon quantum dots under electrical pumping [J].
Irrera, A ;
Pacifici, D ;
Miritello, M ;
Franzò, G ;
Priolo, F ;
Iacona, F ;
Sanfilippo, D ;
Di Stefano, G ;
Fallica, PG .
APPLIED PHYSICS LETTERS, 2002, 81 (10) :1866-1868
[6]  
IVANDA M, 2003, IN PRESS NATO SC ARW, V79, P119
[7]  
Johnson S.G., 2001, Photonic Crystals: The Road from Theory to Practice
[8]   Optical gain in Si/SiO2 lattice:: Experimental evidence with nanosecond pulses [J].
Khriachtchev, L ;
Räsänen, M ;
Novikov, S ;
Sinkkonen, J .
APPLIED PHYSICS LETTERS, 2001, 79 (09) :1249-1251
[9]   Photoluminescence of size-separated silicon nanocrystals: Confirmation of quantum confinement [J].
Ledoux, G ;
Gong, J ;
Huisken, F ;
Guillois, O ;
Reynaud, C .
APPLIED PHYSICS LETTERS, 2002, 80 (25) :4834-4836
[10]   Defect-related versus excitonic visible light emission from ion beam synthesized Si nanocrystals in SiO2 [J].
Min, KS ;
Shcheglov, KV ;
Yang, CM ;
Atwater, HA ;
Brongersma, ML ;
Polman, A .
APPLIED PHYSICS LETTERS, 1996, 69 (14) :2033-2035