Catalytic activation of ceramic H2 membranes for CMR processes

被引:19
作者
Escolastico, S. [1 ]
Kjolseth, C. [2 ]
Serra, J. M. [1 ]
机构
[1] Univ Politecn Valencia, CSIC, Inst Tecnol Quim, Ave los Naranjos S-N, E-46022 Valencia, Spain
[2] Forskningsparken, Coorstek Membrane Sci, Gaustadalleen 21, NO-0349 Oslo, Norway
关键词
Hydrogen; Catalyst; Proton conductor; Catalytic membrane reactor; Methane; HOLLOW-FIBER MEMBRANES; HYDROGEN-PERMEATION; OXYGEN PERMEATION; CERMET MEMBRANE; ANODES; STABILITY; PERMEABILITY; PEROVSKITE; CONVERSION; TRANSPORT;
D O I
10.1016/j.memsci.2016.06.017
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The application of catalytic membrane reactors can overcome some of the disadvantages that reactions for the direct conversion of methane to fuels and petrochemicals present. Hydrogen separation membranes can shift the reaction equilibrium by hydrogen removal, improving the separation, selectivity and yield of the reactions. La5.5WO11.25-delta/La0.87Sr0.13CrO3-delta (LWO/LSC) based membranes present a high H-2 flux within the temperature range where CMR can be applied. However, the catalytic activity of the material is very low and it has to be improved. This work presents the development of different catalytic layers based on LSC material and the study of their influence on the H-2 flux obtained by using 60/40-LWO/LSC membranes. Membranes coated with porous layer made of Ni-infiltrated La0.75Ce0.1Sr0.15CrO3-delta exhibited the best permeation flux but still 20% lower than the one reached using Pt layers. Stability of the catalytic layers is also evaluated under H2 permeation conditions and under high steam content methane. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:57 / 63
页数:7
相关论文
共 36 条
[1]   The fluidized-bed membrane reactor for steam methane reforming: Model verification and parametric study [J].
Adris, AM ;
Lim, CJ ;
Grace, JR .
CHEMICAL ENGINEERING SCIENCE, 1997, 52 (10) :1609-1622
[2]   Direct methane conversion routes to chemicals and fuels [J].
Alvarez-Galvan, M. C. ;
Mota, N. ;
Ojeda, M. ;
Rojas, S. ;
Navarro, R. M. ;
Fierro, J. L. G. .
CATALYSIS TODAY, 2011, 171 (01) :15-23
[3]   High performance anodes with tailored catalytic properties for La5.6WO11.4-δ based proton conducting fuel cells [J].
Balaguer, M. ;
Solis, C. ;
Bozza, F. ;
Bonanos, N. ;
Serra, J. M. .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (09) :3004-3007
[4]   Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: A review [J].
Barelli, L. ;
Bidini, G. ;
Gallorini, F. ;
Servili, S. .
ENERGY, 2008, 33 (04) :554-570
[5]   Dense ceramic catalytic membranes and membrane reactors for energy and environmental applications [J].
Dong, Xueliang ;
Jin, Wanqin ;
Xu, Nanping ;
Li, Kang .
CHEMICAL COMMUNICATIONS, 2011, 47 (39) :10886-10902
[6]   Outstanding hydrogen permeation through CO2-stable dual-phase ceramic membranes [J].
Escolastico, S. ;
Solis, C. ;
Kjolseth, C. ;
Serra, J. M. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (11) :3736-3746
[7]   Tailoring mixed ionic-electronic conduction in H2 permeable membranes based on the system Nd5.5W1-xMoxO11.25-δ [J].
Escolastico, Sonia ;
Somacescu, Simona ;
Serra, Jose M. .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (02) :719-731
[8]   Solid State Transport and Hydrogen Permeation in the System Nd5.5W1-xRexO11.25-δ [J].
Escolastico, Sonia ;
Somacescu, Simona ;
Serra, Jose M. .
CHEMISTRY OF MATERIALS, 2014, 26 (02) :982-992
[9]   Surface enhanced oxygen permeation in CaTi1-xFexO3-δ ceramic membranes [J].
Figueiredo, FM ;
Kharton, VV ;
Viskup, AP ;
Frade, JR .
JOURNAL OF MEMBRANE SCIENCE, 2004, 236 (01) :73-80
[10]   The road from animal electricity to green energy: combining experiment and theory in electrocatalysis [J].
Greeley, Jeffrey ;
Markovic, Nenad M. .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (11) :9246-9256