Invariant approximations of the minimal robust. positively invariant set

被引:551
作者
Rakovic, SV [1 ]
Kerrigan, EC
Kouramas, KI
Mayne, DQ
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Elect & Elect Engn, London SW7 2BT, England
[2] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
关键词
invariant approximations; linear systems; robust control; set invariance;
D O I
10.1109/TAC.2005.843854
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This note provides results on approximating the minimal robust positively invariant (mRPI) set (also known as the 0-reachable set) of an asymptotically stable discrete-time linear time-invariant system. It is assumed that the disturbance is bounded, persistent and acts additively on the state and that the constraints on the disturbance are polyhedral. Results are given that allow for the computation of a robust positively invariant, outer approximation of the mRPI set. Conditions are also given that allow one to a priori specify the accuracy of this approximation.
引用
收藏
页码:406 / 410
页数:5
相关论文
共 21 条
[1]   Nonlinear control of constrained linear systems via predictive reference management [J].
Bemporad, A ;
Casavola, A ;
Mosca, E .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1997, 42 (03) :340-349
[2]   MINIMAX REACHABILITY OF TARGET SETS AND TARGET TUBES [J].
BERTSEKAS, DP ;
RHODES, IB .
AUTOMATICA, 1971, 7 (02) :233-+
[3]   Set invariance in control [J].
Blanchini, F .
AUTOMATICA, 1999, 35 (11) :1747-1767
[4]  
BLANCHINI F, 1992, PROCEEDINGS OF THE 31ST IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, P2629, DOI 10.1109/CDC.1992.371340
[5]   State and output feedback nonlinear model predictive control:: An overview [J].
Findeisen, R ;
Imsland, L ;
Allgöwer, F ;
Foss, BA .
EUROPEAN JOURNAL OF CONTROL, 2003, 9 (2-3) :190-206
[6]  
GAYEK JE, 1991, PROCEEDINGS OF THE 30TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-3, P1724, DOI 10.1109/CDC.1991.261702
[7]  
Gilbert EG, 1999, INT J ROBUST NONLIN, V9, P1117, DOI 10.1002/(SICI)1099-1239(19991230)9:15<1117::AID-RNC447>3.0.CO
[8]  
2-I
[9]   CONTROL OF LINEAR DYNAMIC SYSTEMS WITH SET CONSTRAINED DISTURBANCES [J].
GLOVER, JD ;
SCHWEPPE, FC .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1971, AC16 (05) :411-&
[10]   e-feasible approximation of the state reachable set for discrete-time systems [J].
Hirata, K ;
Ohta, Y .
42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, 2003, :5520-5525