Lanosterol biosynthesis in the prokaryote Methylococcus capsulatus:: Insight into the evolution of sterol biosynthesis

被引:44
作者
Lamb, David C. [1 ]
Jackson, Colin J.
Warrilow, Andrew G. S.
Manning, Nigel J.
Kelly, Diane E.
Kelly, Steven L.
机构
[1] Univ Wales Swansea, Swansea Med Sch, Inst Life Sci, Swansea, W Glam, Wales
[2] Sheffield Childrens Hosp, Sheffield, S Yorkshire, England
基金
英国惠康基金;
关键词
sterol; squalene monooxygenase; oxidosqualene cyclase; Methylococcus capsulatus; cytochrome P450; evolution;
D O I
10.1093/molbev/msm090
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A putative operon containing homologues of essential eukaryotic sterol biosynthetic enzymes, squalene monooxygenase and oxidosqualene cyclase, has been identified in the genome of the prokaryote Methylococcus capsulatus. Expression of the squalene monooxygenase yielded a protein associated with the membrane fraction, while expression of oxidosqualene cyclase yielded a soluble protein, contrasting with the eukaryotic enzyme forms. Activity studies with purified squalene monooxygenase revealed a catalytic activity in epoxidation of 0.35 nmol oxidosqualene produced/min/ nmol squalene monooxygenase, while oxidosqualene cyclase catalytic activity revealed cyclization of oxidosqualene to lanosterol with 0.6 nmol lanosterol produced/min/nmol oxidosqualene cyclase and no other products observed. The presence of prokaryotic sterol biosynthesis is still regarded as rare, and these are the first representatives of such prokaryotic enzymes to be studied, providing new insight into the evolution of sterol biosynthesis in general.
引用
收藏
页码:1714 / 1721
页数:8
相关论文
共 50 条
  • [31] EFFECTS OF ETHEPHON AND NORBORNADIENE ON STEROL AND GLYCOALKALOID BIOSYNTHESIS IN POTATO-TUBER DISKS
    BERGENSTRAHLE, A
    TILLBERG, E
    JONSSON, L
    PHYSIOLOGIA PLANTARUM, 1993, 89 (02) : 301 - 308
  • [32] Enzymatic chokepoints and synergistic drug targets in the sterol biosynthesis pathway of Naegleria fowleri
    Zhou, Wenxu
    Debnath, Anjan
    Jennings, Gareth
    Hahn, Hye Jee
    Vanderloop, Boden H.
    Chaudhuri, Minu
    Nes, W. David
    Podust, Larissa M.
    PLOS PATHOGENS, 2018, 14 (09)
  • [33] Comparative genomics and evolution of eukaryotic phospholipid biosynthesis
    Lykidis, Athanasios
    PROGRESS IN LIPID RESEARCH, 2007, 46 (3-4) : 171 - 199
  • [34] Insight into yeast: A study model of lipid metabolism and terpenoid biosynthesis
    Hu, Cheng
    Lu, Wenyu
    BIOTECHNOLOGY AND APPLIED BIOCHEMISTRY, 2015, 62 (03) : 323 - 328
  • [35] Evolution of aromatic prenyltransferases in the biosynthesis of indole derivatives
    Li, Shu-Ming
    PHYTOCHEMISTRY, 2009, 70 (15-16) : 1746 - 1757
  • [36] Genome assembly of Stephania longa provides insight into cepharanthine biosynthesis
    Shang, Huiying
    Lu, Yuan
    Xun, Lulu
    Wang, Kun
    Li, Bin
    Liu, Yuxuan
    Ma, Tao
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [37] Evolutionary changes to transthyretin: evolution of transthyretin biosynthesis
    Richardson, Samantha J.
    FEBS JOURNAL, 2009, 276 (19) : 5342 - 5356
  • [38] Cloning, functional expression and phylogenetic analysis of plant sterol 24C-methyltransferases involved in sitosterol biosynthesis
    Neelakandan, Anjanasree K.
    Song, Zhihong
    Wang, Junqing
    Richards, Matthew H.
    Wu, Xiaolei
    Valliyodan, Babu
    Nguyen, Henry T.
    Nes, W. David
    PHYTOCHEMISTRY, 2009, 70 (17-18) : 1982 - 1998
  • [39] Membrane Sterol Composition in Arabidopsis thaliana Affects Root Elongation via Auxin Biosynthesis
    Wang, Meng
    Li, Panpan
    Ma, Yao
    Nie, Xiang
    Grebe, Markus
    Men, Shuzhen
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (01) : 1 - 20
  • [40] GENETIC CORRELATIONS IN RESISTANCE TO STEROL BIOSYNTHESIS-INHIBITING FUNGICIDES IN PYRENOPHORA-TERES
    PEEVER, TL
    MILGROOM, MG
    PHYTOPATHOLOGY, 1993, 83 (10) : 1076 - 1082