Remaining dischargeable time prediction for lithium-ion batteries using unscented Kalman filter

被引:70
作者
Dong, Guangzhong [1 ]
Wei, Jingwen [1 ]
Chen, Zonghai [1 ]
Sun, Han [1 ]
Yu, Xiaowei [1 ]
机构
[1] Univ Sci & Technol China, Dept Automat, Hefei 230027, Anhui, Peoples R China
关键词
Battery modeling; State-of-charge; Lithium-ion battery; Remaining dischargeable time; OF-CHARGE ESTIMATION; SLIDING MODE OBSERVER; NEURAL-NETWORK MODEL; ELECTRIC VEHICLES; ENERGY ESTIMATION; ONLINE ESTIMATION; STATE; PARAMETER;
D O I
10.1016/j.jpowsour.2017.08.040
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To overcome the range anxiety, one of the important strategies is to accurately predict the range or dischargeable time of the battery system. To accurately predict the remaining dischargeable time (RDT) of a battery, a RDT prediction framework based on accurate battery modeling and state estimation is presented in this paper. Firstly, a simplified linearized equivalent-circuit-model is developed to simulate the dynamic characteristics of a battery. Then, an online recursive least-square-algorithm method and unscented-Kalman-filter are employed to estimate the system matrices and SOC at every prediction point. Besides, a discrete wavelet transform technique is employed to capture the statistical information of past dynamics of input currents, which are utilized to predict the future battery currents. Finally, the RDT can be predicted based on the battery model, SOC estimation results and predicted future battery currents. The performance of the proposed methodology has been verified by a lithium-ion battery cell. Experimental results indicate that the proposed method can provide an accurate SOC and parameter estimation and the predicted RDT can solve the range anxiety issues. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:316 / 327
页数:12
相关论文
共 28 条
[1]   Particle-filtering-based estimation of maximum available power state in Lithium-Ion batteries [J].
Burgos-Mellado, Claudio ;
Orchard, Marcos E. ;
Kazerani, Mehrdad ;
Cardenas, Roberto ;
Saez, Doris .
APPLIED ENERGY, 2016, 161 :349-363
[2]   A novel approach for state of charge estimation based on adaptive switching gain sliding mode observer in electric vehicles [J].
Chen, Xiaopeng ;
Shen, Weixiang ;
Cao, Zhenwei ;
Kapoor, Ajay .
JOURNAL OF POWER SOURCES, 2014, 246 :667-678
[3]   Kalman filter for onboard state of charge estimation and peak power capability analysis of lithium-ion batteries [J].
Dong, Guangzhong ;
Wei, Jingwen ;
Chen, Zonghai .
JOURNAL OF POWER SOURCES, 2016, 328 :615-626
[4]   Online state of charge estimation and open circuit voltage hysteresis modeling of LiFePO4 battery using invariant imbedding method [J].
Dong, Guangzhong ;
Wei, Jingwen ;
Zhang, Chenbin ;
Chen, Zonghai .
APPLIED ENERGY, 2016, 162 :163-171
[5]   A method for state of energy estimation of lithium-ion batteries based on neural network model [J].
Dong, Guangzhong ;
Zhang, Xu ;
Zhang, Chenbin ;
Chen, Zonghai .
ENERGY, 2015, 90 :879-888
[6]   An online model-based method for state of energy estimation of lithium-ion batteries using dual filters [J].
Dong, Guangzhong ;
Chen, Zonghai ;
Wei, Jingwen ;
Zhang, Chenbin ;
Wang, Peng .
JOURNAL OF POWER SOURCES, 2016, 301 :277-286
[7]   An adaptive sliding mode observer for lithium-ion battery state of charge and state of health estimation in electric vehicles [J].
Du, Jiani ;
Liu, Zhitao ;
Wang, Youyi ;
Wen, Changyun .
CONTROL ENGINEERING PRACTICE, 2016, 54 :81-90
[8]   A new model for State-of-Charge (SOC) estimation for high-power Li-ion batteries [J].
He, Yao ;
Liu, XingTao ;
Zhang, ChenBin ;
Chen, ZongHai .
APPLIED ENERGY, 2013, 101 :808-814
[9]   Adaptive State of Charge Estimation for Li-Ion Batteries Based on an Unscented Kalman Filter with an Enhanced Battery Model [J].
He, Zhiwei ;
Gao, Mingyu ;
Wang, Caisheng ;
Wang, Leyi ;
Liu, Yuanyuan .
ENERGIES, 2013, 6 (08) :4134-4151
[10]   A new neural network model for the state-of-charge estimation in the battery degradation process [J].
Kang, LiuWang ;
Zhao, Xuan ;
Ma, Jian .
APPLIED ENERGY, 2014, 121 :20-27