Fixed and random effects selection in linear and logistic models

被引:87
作者
Kinney, Satkartar K.
Dunson, David B.
机构
[1] Duke Univ, Inst Stat & Decis Sci, Durham, NC 27705 USA
[2] NIEHS, Biostat Branch, Res Triangle Pk, NC 27709 USA
关键词
Bayesian model selection; logistic regression; mixed effects model; model averaging; parameterexpansion; random effects; variance components test; variable selection;
D O I
10.1111/j.1541-0420.2007.00771.x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We address the problem of selecting which variables should be included in the fixed and random components of logistic mixed effects models for correlated data. A fully Bayesian variable selection is implemented using a stochastic search Gibbs sampler to estimate the exact model-averaged posterior distribution. This approach automatically identifies subsets of predictors having nonzero fixed effect coefficients or nonzero random effects variance, while allowing uncertainty in the model selection process. Default priors are proposed for the variance components and an efficient parameter expansion Gibbs sampler is developed for posterior computation. The approach is illustrated using simulated data and an epidemiologic example.
引用
收藏
页码:690 / 698
页数:9
相关论文
共 42 条
[1]  
Agresti A., 1990, Analysis of categorical data
[2]   BAYESIAN-ANALYSIS OF BINARY AND POLYCHOTOMOUS RESPONSE DATA [J].
ALBERT, JH ;
CHIB, S .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (422) :669-679
[3]   Sequential ordinal modeling with applications to survival data [J].
Albert, JH ;
Chib, S .
BIOMETRICS, 2001, 57 (03) :829-836
[4]  
[Anonymous], BAYESIAN METHODS APP
[5]  
BRESLOW N, 2003, UW BIOSTATISTICS WOR, V192
[6]   APPROXIMATE INFERENCE IN GENERALIZED LINEAR MIXED MODELS [J].
BRESLOW, NE ;
CLAYTON, DG .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (421) :9-25
[7]   Bayesian covariance selection in generalized linear mixed models [J].
Cai, Bo ;
Dunson, David B. .
BIOMETRICS, 2006, 62 (02) :446-457
[8]   Random effects selection in linear mixed models [J].
Chen, Z ;
Dunson, DB .
BIOMETRICS, 2003, 59 (04) :762-769
[9]   Analysis of multivariate probit models [J].
Chib, S ;
Greenberg, E .
BIOMETRIKA, 1998, 85 (02) :347-361
[10]   Model determination for the variance component model using reference priors [J].
Chung, Y ;
Dey, DK .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2002, 100 (01) :49-65