Identification and Learning Control of Ocean Surface Ship Using Neural Networks

被引:197
作者
Dai, Shi-Lu [1 ]
Wang, Cong [1 ]
Luo, Fei [1 ]
机构
[1] S China Univ Technol, Coll Automat Sci & Engn, Guangzhou 510641, Guangdong, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Adaptive neural network (NN) control; learning; persistent excitation (PE) condition; ship control; uncertain dynamics; SYSTEMS;
D O I
10.1109/TII.2012.2205584
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents the problems of accurate identification and learning control of ocean surface ship in uncertain dynamical environments. Thanks to the universal approximation capabilities, radial basis function neural networks (NNs) are employed to approximate the unknown ocean surface ship dynamics. A stable adaptive NN tracking controller is first designed using backstepping and Lyapunov synthesis. Partial persistent excitation (PE) condition of some internal signals in the closed-loop system is satisfied during tracking control to a recurrent reference trajectory. Under the PE condition, the proposed adaptive NN controller is shown to be capable of accurate identification/learning of the uncertain ship dynamics in the stable control process. Subsequently, a novel NN learning control method which effectively utilizes the learned knowledge without re-adapting to the unknown ship dynamics is proposed to achieve closed-loop stability and improved control performance. Simulation studies are performed to demonstrate the effectiveness of the proposed method.
引用
收藏
页码:801 / 810
页数:10
相关论文
共 27 条