Thermal Shock Resistance of APS 8YSZ Thermal Barrier Coatings on Titanium Alloy

被引:14
作者
Zeng, Shuibing [1 ]
Liu, Yangjia [1 ]
Fan, Xizhi [1 ]
Huang, Wenzhi [2 ]
Gu, Lijian [2 ]
Zou, Binglin [2 ]
Chen, Xiaolong [2 ]
Khan, Zuhair S. [2 ]
Zhu, Ling [1 ]
Yang, Daowu [1 ]
Cao, Xueqiang [1 ,2 ]
机构
[1] Changsha Univ Sci & Technol, Dept Chem & Biol Engn, Changsha 410114, Hunan, Peoples R China
[2] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Rare Earth Resources Utilizat, Changchun 130022, Peoples R China
关键词
plasma spraying; thermal insulation; thermal shock; titanium alloy; 8YSZ; OXIDATION BEHAVIOR; THERMOPHYSICAL PROPERTIES; FAILURE MECHANISMS; AL COATINGS; GROWN OXIDE; DIFFUSION; TEMPERATURE; PROTECTION; NI; MICROSTRUCTURE;
D O I
10.1007/s11666-011-9721-2
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Thermal barrier coatings (TBCs) with a typical 8YSZ ceramic top coat and CoNiCrAlY bond coat were deposited on titanium alloy substrate (Ti-6Al-4V in wt.%) by air plasma spraying. Thermal insulation and thermal shock resistance of the TBCs at different temperatures as well as their failure behavior were investigated. The results showed that the test temperature had a significant effect on thermal shock life of the TBCs. Failure of the TBCs systems was caused by the formation of crack, bond coat oxidation and elemental diffusion. The vertical cracks induced by thermal shock cycles were probably responsible for the enhancement in thermal shock resistance of the TBCs. Furthermore, elemental diffusion had a great effect on the acceleration of the TBCs failure. The TBCs could provide a good thermal protection for the titanium alloy substrate.
引用
收藏
页码:335 / 343
页数:9
相关论文
共 50 条
  • [41] Thermal shock behavior of EB-PVD thermal barrier coatings based on YSZ ceramic coat and (Ni, Pt)Al metallic bond coat
    Liu, Yuzhuo
    Wang, Xin
    Zhen, Zhen
    Mu, Rende
    He, Limin
    Xu, Zhenhua
    OPEN CERAMICS, 2023, 16
  • [42] Thermal shock of functionally graded thermal barrier coatings with similar thermal resistance
    Kokini, K
    DeJonge, J
    Rangaraj, S
    Beardsley, B
    SURFACE & COATINGS TECHNOLOGY, 2002, 154 (2-3) : 223 - 231
  • [43] Creep behavior of titanium alloy with thermal barrier coatings
    Zhao B.
    Zhang T.
    Xia T.
    Wang C.
    Bai Y.
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2020, 35 (08): : 1762 - 1767
  • [44] Effect of Laser Alloying TiC Doping on the Hot Corrosion Behavior of Plasma Sprayed 8YSZ Thermal Barrier Coatings
    Zhang, Panpan
    Sun, Yuhai
    Sun, Lei
    Li, Bo
    Zhang, Qunli
    Yao, Jianhua
    CHINA SURFACE ENGINEERING, 2023, 36 (06) : 126 - 134
  • [45] Investigation of Thermal Shock Behavior of Plasma-Sprayed NiCoCrAlY/YSZ Thermal Barrier Coatings
    Jamali, Hossein
    Mozafarinia, Reza
    Shoja-Razavi, Reza
    Ahmadi-Pidani, Raheleh
    ADVANCED MANUFACTURING TECHNOLOGY, PTS 1-4, 2012, 472-475 : 246 - 250
  • [46] Influence of Microstructures on Thermal Shock and Sintering Behavior of YSZ-based Thermal Barrier Coatings
    Kirsten Bobzin
    Lidong Zhao
    Mehmet ?te
    Tim K?nigstein
    表面技术, 2019, 48 (04) : 28 - 33
  • [47] Thermal shock resistance of double-layer thermal barrier coatings
    Feng, Yang
    Dong, Tian-shun
    Fu, Bin-guo
    Li, Guo-lu
    Liu, Qi
    Wang, Ran
    JOURNAL OF MATERIALS RESEARCH, 2020, 35 (20) : 2808 - 2816
  • [48] Build-up of the splat with columnar nanocrystalline for thermal barrier coatings derived from nanostructured t′-8YSZ feedstocks
    Zhou, F. F.
    Deng, C. M.
    Wang, Y.
    Liu, M.
    Zhang, X. F.
    Wang, Y. M.
    CERAMICS INTERNATIONAL, 2020, 46 (03) : 3989 - 3993
  • [49] Thermo-Physical Properties and Thermal Shock Resistance of Segmented La2Ce2O7/YSZ Thermal Barrier Coatings
    Hongbo Guo
    Yi Wang
    Lu Wang
    Shengkai Gong
    Journal of Thermal Spray Technology, 2009, 18 : 665 - 671
  • [50] The effect of silicon on thermal shock performance of aluminide-thermal barrier coatings
    Shirvani, K.
    Mastali, S.
    Rashidghamat, A.
    Abdollahpour, H.
    CORROSION SCIENCE, 2013, 75 : 142 - 147