Generation of statistical scenarios of short-term wind power production

被引:9
|
作者
Pinson, Pierre [1 ]
Papaefthymiou, George [2 ]
Kloeckl, Bernd [3 ]
Nielsen, Henrik Aa. [1 ]
机构
[1] Tech Univ Denmark, Informat & Math Modeling Dept, Copenhagen, Denmark
[2] Delft Univ Technol, Power Syst Lab, NL-2600 AA Delft, Netherlands
[3] Assoc Austrian Elec Comp, Vienna, Austria
来源
2007 IEEE LAUSANNE POWERTECH, VOLS 1-5 | 2007年
关键词
wind power; uncertainty; probabilistic forecasting; multivariate; Normal variable; transformation; scenarios;
D O I
10.1109/PCT.2007.4538366
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Short-term (up to 2-3 days ahead) probabilistic forecasts of wind power provide forecast users with a paramount information on the uncertainty of expected wind generation. Whatever the type of these probabilistic forecasts, they are produced on a per horizon basis, and hence do not inform on the development of the forecast uncertainty through forecast series. This issue is addressed here by describing a method that permits to generate statistical scenarios of wind generation that accounts for the interdependence structure of prediction errors, in plus of respecting predictive distributions of wind generation. The approach is evaluated on the test case of a multi-MW wind farm over a period of more than two years. Its interest for a large range of applications is discussed.
引用
收藏
页码:491 / +
页数:2
相关论文
共 50 条
  • [1] From Probabilistic Forecasts to Statistical Scenarios of Short-term Wind Power Production
    Pinson, Pierre
    Madsen, Henrik
    Nielsen, Henrik Aa.
    Papaefthymiou, George
    Kloeckl, Bernd
    WIND ENERGY, 2009, 12 (01) : 51 - 62
  • [2] Generation of Short-term Wind Power Scenarios from an Ensemble of Hourly Wind Speed Forecasts
    Pessanha, J. F. M.
    Melo, A. C. G.
    Maceira, M. E. P.
    Almeida, V. A.
    2022 17TH INTERNATIONAL CONFERENCE ON PROBABILISTIC METHODS APPLIED TO POWER SYSTEMS (PMAPS), 2022,
  • [3] An Efficient Scenario Generation Technique for Short-Term Wind Power Production
    Al-Awami, Ali T.
    Khalid, M. Waqas
    El-Sharkawi, M. A.
    2018 IEEE INTERNATIONAL CONFERENCE ON PROBABILISTIC METHODS APPLIED TO POWER SYSTEMS (PMAPS), 2018,
  • [4] Forecast on Short-Term Wind Speed and Wind Farm Power Generation
    Cheng, Yiping
    PROCEEDINGS OF THE 2015 4TH NATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS AND COMPUTER ENGINEERING ( NCEECE 2015), 2016, 47 : 80 - 86
  • [5] Very short-term wind forecasting for Tasmanian power generation
    Potter, CW
    Negnevitsky, M
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2006, 21 (02) : 965 - 972
  • [6] Trading wind generation from short-term Probabilistic forecasts of wind power
    Pinson, Pierre
    Chevallier, Christophe
    Kariniotakis, George N.
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2007, 22 (03) : 1148 - 1156
  • [7] Short-Term Wind Power Scenario Generation Based on Conditional Latent Diffusion Models
    Dong, Xiaochong
    Mao, Zhihang
    Sun, Yingyun
    Xu, Xinzhi
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2024, 15 (02) : 1074 - 1085
  • [8] Prediction Intervals for Short-Term Wind Farm Power Generation Forecasts
    Khosravi, Abbas
    Nahavandi, Saeid
    Creighton, Doug
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2013, 4 (03) : 602 - 610
  • [9] Generating short-term probabilistic wind power scenarios via nonparametric forecast error density estimators
    Staid, Andrea
    Watson, Jean-Paul
    Wets, Roger J. -B.
    Woodruff, David L.
    WIND ENERGY, 2017, 20 (12) : 1911 - 1925
  • [10] An Advanced Bayesian Method for Short-Term Probabilistic Forecasting of the Generation of Wind Power
    Bracale, Antonio
    De Falco, Pasquale
    ENERGIES, 2015, 8 (09) : 10293 - 10314