Classification of Military Aircraft in Real-time Radar Systems based on Supervised Machine Learning with Labelled ADS-B Data

被引:0
|
作者
Daestner, Kaeye [1 ]
Brunessaux, Susie [2 ]
Schmid, Elke [1 ]
Roseneckh-Koehler, Bastian von Hassler Zu [1 ]
Opitz, Felix [1 ]
机构
[1] AIRBUS, D-89077 Ulm, Germany
[2] ESIGELEC, Grad Sch Engn, F-76800 St Etienne Du Rouvray, France
来源
2018 SYMPOSIUM ON SENSOR DATA FUSION: TRENDS, SOLUTIONS, APPLICATIONS (SDF) | 2018年
关键词
Classification; ADS-B; Machine Learning; Radar Systems; Big Data; Real-time Air Surveillance; Imbalanced Data;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Air surveillance is usually based on real-time radar tracking systems, which are able to provide object positions, kinematics and a short time history. Due to the density of the air picture, air traffic controllers normally focus on the actual object kinematics and the full identities of each object, which is received from secondary radars and ADS-B. However air surveillance systems in the military domain need additional information on objects classification and identification, since ADS-B of non-cooperative targets are not available. Hence flight characteristics and moving patterns are used as evidence for a military aircraft, which unfortunately are not often recognizable easily in real-time by an operator. This paper describes dedicated machine learning techniques that are trained with ADS-B data to predict military targets. The classifiers can be used within real-time systems.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Design and hard-in-loop simulation of the real time flight safety monitoring based on ADS-B
    Liu Yichao
    Wang Qiang
    Shi Hong
    PROCEEDINGS OF THE 2ND INFORMATION TECHNOLOGY AND MECHATRONICS ENGINEERING CONFERENCE (ITOEC 2016), 2016, 24 : 212 - 221
  • [42] A Machine Learning-based Real-time Monitoring System for Classification of Elephant Flows on KOREN
    Akbar, Waleed
    Rivera, Javier J. D.
    Ahmed, Khan T.
    Muhammad, Afaq
    Song, Wang-Cheol
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2022, 16 (08): : 2801 - 2815
  • [43] Real-time Machine Learning-Based CLBF-MPC of Nonlinear Systems
    Wu, Zhe
    Rincon, David
    Christofides, Panagiotis D.
    IFAC PAPERSONLINE, 2020, 53 (02): : 11589 - 11594
  • [44] Performance Analysis of Lambda Architecture-Based Big-Data Systems on Air/Ground Surveillance Application with ADS-B Data
    Demirezen, Mustafa Umut
    Navruz, Tugba Selcen
    SENSORS, 2023, 23 (17)
  • [45] Integration of Optical Property Mapping and Machine Learning for Real-Time Classification of Early Bruises of Apples
    Hu, Dong
    Qiu, Dekai
    Yu, Shengqi
    Jia, Tianze
    Zhou, Tongtong
    Yan, Xiaojie
    FOOD AND BIOPROCESS TECHNOLOGY, 2024, 17 (09) : 2745 - 2756
  • [46] Smart Manufacturing Real-Time Analysis Based on Blockchain and Machine Learning Approaches
    Shahbazi, Zeinab
    Byun, Yung-Cheol
    APPLIED SCIENCES-BASEL, 2021, 11 (08):
  • [47] DESIGN OF REAL-TIME SYSTEM BASED ON MACHINE LEARNING FOR SNORING AND OSA DETECTION
    Luo, Huaiwen
    Zhang, Lu
    Zhou, Lianyu
    Lin, Xu
    Zhang, Zehuai
    Wang, Mingjiang
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 1156 - 1160
  • [48] Real-time traffic congestion prediction using big data and machine learning techniques
    Chawla, Priyanka
    Hasurkar, Rutuja
    Bogadi, Chaithanya Reddy
    Korlapati, Naga Sindhu
    Rajendran, Rajasree
    Ravichandran, Sindu
    Tolem, Sai Chaitanya
    Gao, Jerry Zeyu
    WORLD JOURNAL OF ENGINEERING, 2024, 21 (01) : 140 - 155
  • [49] Real-Time Prediction for IC Aging Based on Machine Learning
    Huang, Ke
    Zhang, Xinqiao
    Karimi, Naghmeh
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2019, 68 (12) : 4756 - 4764
  • [50] Machine Learning-Based Real-Time Metasurface Reconfiguration
    Su, Feng
    Luong, David
    Lam, Ian
    Rajan, Sreeraman
    Gupta, Shulabh
    2023 IEEE SENSORS APPLICATIONS SYMPOSIUM, SAS, 2023,