Toward biomass-derived renewable plastics: Production of 2,5-furandicarboxylic acid from fructose

被引:326
作者
Motagamwala, Ali Hussain [1 ,2 ]
Won, Wangyun [1 ,2 ,3 ]
Sener, Canan [1 ,2 ]
Alonso, David Martin [1 ]
Maravelias, Christos T. [1 ,2 ]
Dumesic, James A. [1 ,2 ]
机构
[1] Univ Wisconsin Madison, Dept Chem & Biol Engn, Madison, WI 53706 USA
[2] Univ Wisconsin Madison, US Dept Energy, Great Lakes Bioenergy Res Ctr, 1552 Univ Ave, Madison, WI 53726 USA
[3] Changwon Natl Univ, Dept Chem Engn, Changwonsi 51140, Gyeongsangnam D, South Korea
来源
SCIENCE ADVANCES | 2018年 / 4卷 / 01期
关键词
AMORPHOUS POLY(ETHYLENE FURANOATE); CATALYTIC CONVERSION; SELECTIVE OXIDATION; SORPTION; DERIVATIVES; TRANSPORT; SOLVENTS; STRATEGY; FUELS;
D O I
10.1126/sciadv.aap9722
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We report a process for converting fructose, at a high concentration (15 weight %), to 2,5-furandicarboxylic acid (FDCA), a monomer used in the production of polyethylene furanoate, a renewable plastic. In our process, fructose is dehydrated to hydroxymethylfurfural (HMF) at high yields (70%) using a g-valerolactone (GVL)/H2O solvent system. HMF is subsequently oxidized to FDCA over a Pt/C catalyst with 93% yield. The advantage of our system is the higher solubility of FDCA in GVL/H2O, which allows oxidation at high concentrations using a heterogeneous catalyst that eliminates the need for a homogeneous base. In addition, FDCA can be separated from the GVL/H2O solvent system by crystallization to obtain >99% pure FDCA. Our process eliminates the use of corrosive acids, because FDCA is an effective catalyst for fructose dehydration, leading to improved economic and environmental impact of the process. Our techno-economic model indicates that the overall process is economically competitive with current terephthalic acid processes.
引用
收藏
页数:8
相关论文
共 33 条
  • [1] Boussie T.R., 2013, US Pat, Patent No. [8,501,989, 8501989]
  • [2] DEHYDRATION REACTIONS OF FRUCTOSE IN NON-AQUEOUS MEDIA
    BROWN, DW
    FLOYD, AJ
    KINSMAN, RG
    ROSHANALI, Y
    [J]. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 1982, 32 (10) : 920 - 924
  • [3] Carbon Dioxide Sorption and Transport in Amorphous Poly(ethylene furanoate)
    Burgess, Steven K.
    Kriegel, Robert M.
    Koros, William J.
    [J]. MACROMOLECULES, 2015, 48 (07) : 2184 - 2193
  • [4] Water sorption in poly(ethylene furanoate) compared to poly(ethylene terephthalate). Part 1: Equilibrium sorption
    Burgess, Steven K.
    Mikkilineni, Dharmik S.
    Yu, Daniel B.
    Kim, Danny J.
    Mubarak, Christopher R.
    Kriegel, Robert M.
    Koros, William J.
    [J]. POLYMER, 2014, 55 (26) : 6861 - 6869
  • [5] Oxygen sorption and transport in amorphous poly(ethylene furanoate)
    Burgess, Steven K.
    Karvan, Oguz
    Johnson, J. R.
    Kriegel, Robert M.
    Koros, William J.
    [J]. POLYMER, 2014, 55 (18) : 4748 - 4756
  • [6] Chain Mobility, Thermal, and Mechanical Properties of Poly(ethylene furanoate) Compared to Poly(ethylene terephthalate)
    Burgess, Steven K.
    Leisen, Johannes E.
    Kraftschik, Brian E.
    Mubarak, Christopher R.
    Kriegel, Robert M.
    Koros, William J.
    [J]. MACROMOLECULES, 2014, 47 (04) : 1383 - 1391
  • [7] Biomass into Chemicals: Aerobic Oxidation of 5-Hydroxymethyl-2-furfural into 2,5-Furandicarboxylic Acid with Gold Nanoparticle Catalysts
    Casanova, Onofre
    Iborra, Sara
    Corma, Avelino
    [J]. CHEMSUSCHEM, 2009, 2 (12) : 1138 - 1144
  • [8] Davis R, 2013, NATL RENEW ENERGY LA
  • [9] Kinetics and mechanism of 5-hydroxymethylfurfural oxidation and their implications for catalyst development
    Davis, Sara E.
    Benavidez, Angelica D.
    Gosselink, Robert W.
    Bitter, Johannes H.
    de Jong, Krijn P.
    Datye, Abhaya K.
    Davis, Robert J.
    [J]. JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2014, 388 : 123 - 132
  • [10] On the mechanism of selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over supported Pt and Au catalysts
    Davis, Sara E.
    Zope, Bhushan N.
    Davis, Robert J.
    [J]. GREEN CHEMISTRY, 2012, 14 (01) : 143 - 147