A monotone geometric mean for a class of Toeplitz matrices

被引:3
作者
Nobari, Elham [1 ]
机构
[1] Univ Sci & Technol Mazandaran, Dept Math, Behshahr, Iran
关键词
Toeplitz matrix; Matrix geometric mean; Laurent operator; Monotonicity;
D O I
10.1016/j.laa.2016.08.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, using Laurent operators and Fourier coefficients of their symbol functions, we introduce a geometric mean for a large class of n x n positive semi-definite Toeplitz matrices which satisfies the monotonicity property. The cost of our approach in term of arithmetic operations for m matrices is of the order O(mn(2)). This definition preserves the structure, is simple to calculate, preserves monotonicity and satisfies some other Ando Li Mathias properties, (C) 2016 Published by Elsevier Inc.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 16 条
[1]   Geometric means [J].
Ando, T ;
Li, CK ;
Mathias, R .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 385 :305-334
[2]  
[Anonymous], 2007, 2007 IEEE C COMPUTER
[3]  
[Anonymous], 1990, GRAD TEXTS MATH
[4]  
Barbaresco F, 2006, AIP CONF PROC, V872, P211
[5]  
Barbaresco F, 2009, LECT NOTES COMPUT SC, V5416, P124
[6]   Riemannian geometry and matrix geometric means [J].
Bhatia, R ;
Holbrook, J .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 413 (2-3) :594-618
[7]  
Bhatia R, 2007, PRINC SER APPL MATH, P1
[8]   Geometric means of structured matrices [J].
Bini, Dario A. ;
Iannazzo, Bruno ;
Jeuris, Ben ;
Vandebril, Raf .
BIT NUMERICAL MATHEMATICS, 2014, 54 (01) :55-83
[9]   Computing the Karcher mean of symmetric positive definite matrices [J].
Bini, Dario A. ;
Iannazzo, Bruno .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (04) :1700-1710
[10]  
Bottcher A., 2006, SPRINGER MONOGRAPHS