3D Bioprinted In Vitro Metastatic Models via Reconstruction of Tumor Microenvironments

被引:200
作者
Meng, Fanben [1 ]
Meyer, Carolyn M. [2 ]
Joung, Daeha [1 ]
Vallera, Daniel A. [3 ]
McAlpine, Michael C. [1 ]
Panoskaltsis-Mortari, Angela [2 ]
机构
[1] Univ Minnesota, Dept Mech Engn, 111 Church St SE, Minneapolis, MN 55455 USA
[2] Univ Minnesota, Div Blood & Marrow Transplantat, Dept Pediat, Minneapolis, MN 55455 USA
[3] Univ Minnesota, Dept Radiat Oncol, Minneapolis, MN 55455 USA
基金
美国国家卫生研究院;
关键词
3D printing; bioprinting; cell migration; drug screening; metastatic cancer model; tumor microenvironment; BISPECIFIC TARGETED TOXIN; EPIDERMAL-GROWTH-FACTOR; MESENCHYMAL TRANSITION; ENDOTHELIAL BARRIER; TISSUE CONSTRUCTS; CULTURE MODELS; MOUSE MODEL; CANCER; IMMUNOGENICITY; RECEPTORS;
D O I
10.1002/adma.201806899
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The development of 3D in vitro models capable of recapitulating native tumor microenvironments could improve the translatability of potential anticancer drugs and treatments. Here, 3D bioprinting techniques are used to build tumor constructs via precise placement of living cells, functional biomaterials, and programmable release capsules. This enables the spatiotemporal control of signaling molecular gradients, thereby dynamically modulating cellular behaviors at a local level. Vascularized tumor models are created to mimic key steps of cancer dissemination (invasion, intravasation, and angiogenesis), based on guided migration of tumor cells and endothelial cells in the context of stromal cells and growth factors. The utility of the metastatic models for drug screening is demonstrated by evaluating the anticancer efficacy of immunotoxins. These 3D vascularized tumor tissues provide a proof-of-concept platform to i) fundamentally explore the molecular mechanisms of tumor progression and metastasis, and ii) preclinically identify therapeutic agents and screen anticancer drugs.
引用
收藏
页数:10
相关论文
共 59 条
[1]   Epithelial stem cells, wound healing and cancer [J].
Arwert, Esther N. ;
Hoste, Esther ;
Watt, Fiona M. .
NATURE REVIEWS CANCER, 2012, 12 (03) :170-180
[2]   Genetically engineered cerebral organoids model brain tumor formation [J].
Bian, Shan ;
Repic, Marko ;
Guo, Zhenming ;
Kavirayani, Anoop ;
Burkard, Thomas ;
Bagley, Joshua A. ;
Krauditsch, Christian ;
Knoblich, Juergen A. .
NATURE METHODS, 2018, 15 (08) :631-+
[3]   The JUN kinase stress-activated protein kinase pathway is required for epidermal growth factor stimulation of growth of human A549 lung carcinoma cells [J].
Bost, F ;
McKay, R ;
Dean, N ;
Mercola, D .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (52) :33422-33429
[4]   A Perspective on Cancer Cell Metastasis [J].
Chaffer, Christine L. ;
Weinberg, Robert A. .
SCIENCE, 2011, 331 (6024) :1559-1564
[5]   On-chip human microvasculature assay for visualization and quantification of tumor cell extravasation dynamics [J].
Chen, Michelle B. ;
Whisler, Jordan A. ;
Froese, Julia ;
Yu, Cathy ;
Shin, Yoojin ;
Kamm, Roger D. .
NATURE PROTOCOLS, 2017, 12 (05) :865-880
[6]   Microfl uidic Bioprinting of Heterogeneous 3D Tissue Constructs Using Low-Viscosity Bioink [J].
Colosi, Cristina ;
Shin, Su Ryon ;
Manoharan, Vijayan ;
Massa, Solange ;
Costantini, Marco ;
Barbetta, Andrea ;
Dokmeci, Mehmet Remzi ;
Dentini, Mariella ;
Khademhosseini, Ali .
ADVANCED MATERIALS, 2016, 28 (04) :677-684
[7]   Intravital imaging of cell movement in tumours [J].
Condeelis, J ;
Segall, JE .
NATURE REVIEWS CANCER, 2003, 3 (12) :921-930
[8]   Angiogenesis modulation in cancer research: Novel clinical approaches [J].
Cristofanilli, M ;
Charnsangavej, C ;
Hortobagyi, GN .
NATURE REVIEWS DRUG DISCOVERY, 2002, 1 (06) :415-426
[9]   3D Bioprinting for Organ Regeneration [J].
Cui, Haitao ;
Nowicki, Margaret ;
Fisher, John P. ;
Zhang, Lijie Grace .
ADVANCED HEALTHCARE MATERIALS, 2017, 6 (01)
[10]   Microfluidic system for modelling 3D tumour invasion into surrounding stroma and drug screening [J].
Du, Zhichang ;
Mi, Shengli ;
Yi, Xiaoman ;
Xu, Yuanyuan ;
Sun, Wei .
BIOFABRICATION, 2018, 10 (03)