Bandgap Fluctuations Observed by EL in Various Cu(In,Ga)(Se,S)2 PV Modules

被引:5
作者
Bokalic, Matevz [1 ]
Gerber, Andreas [2 ]
Pieters, Bart E. [2 ]
Rau, Uwe [2 ]
Topic, Marko [1 ]
机构
[1] Univ Ljubljana, Fac Elect Engn, Lab Photovolta & Optoelect, SI-1000 Ljubljana, Slovenia
[2] Forschungszentrum Julich, IEK Photovolta 5, DE-52428 Julich, Germany
来源
IEEE JOURNAL OF PHOTOVOLTAICS | 2018年 / 8卷 / 01期
关键词
Copper indium gallium (di) selenide (CIGS) and cadmium telluride (CdTe) thin film solar cells; characterization of photovoltaic (PV); electroluminescence (EL); multispectral imaging; PV cell and module measurement techniques; SOLAR-CELLS; CU(IN; GA)SE-2; EFFICIENCY; PROFILE;
D O I
10.1109/JPHOTOV.2017.2762589
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
We applied a recently published electroluminescence method for calculating the lateral bandgap distribution to copper indium gallium (di) selenide (CIGS) modules of three manufacturers. First, we used a CIGS module with a known apparent bandgap distribution to calibrate a bandgap imaging method at the electroluminescence setup at the University of Ljubljana. Results of the method newly calibrated at the system are in agreement with the known apparent bandgap distribution. Image analysis of ten CIGS modules of three manufacturers reveals spatial bandgap fluctuations of different types and intensities across the modules. Average apparent bandgap and its standard deviation vary from 0.99 to 1.14 eV and 4 to 22 meV, respectively. Observed fluctuation patterns often match between the modules of the same manufacturer, indicating that the fluctuations originate from systematic spatial variations in the production process. Variety of fluctuations indicates that they should be investigated both between different module types and within a single type. A standard deviation of 22 meV leads to an estimated loss in the efficiency of 0.26% (absolute); thus, such bandgap fluctuations constitute an optimization potential for the manufacturer.
引用
收藏
页码:272 / 277
页数:6
相关论文
共 18 条
[1]   Efficient Cu(In,Ga)(Se,S)2 modules with sputtered Zn(O,S) buffer layer [J].
Algasinger, Michael ;
Niesen, Thomas ;
Dalibor, Thomas ;
Steigert, Alexander ;
Klenk, Reiner ;
Lauermann, Iver ;
Schlatmann, Rutger ;
Lux-Steiner, Martha Ch. ;
Palm, Joerg .
THIN SOLID FILMS, 2017, 633 :231-234
[2]   Determination of the band gap depth profile of the penternary Cu(In(1-X)GaX)(SYSe(1-Y))2 chalcopyrite from its composition gradient [J].
Bär, M ;
Bohne, W ;
Röhrich, J ;
Strub, E ;
Lindner, S ;
Lux-Steiner, MC ;
Fischer, CH ;
Niesen, TP ;
Karg, F .
JOURNAL OF APPLIED PHYSICS, 2004, 96 (07) :3857-3860
[3]  
Bokalic M., 2017, Method and device for the determination of a measure of band gaps at optoelectronic components, Patent No. [WO2017108511 A1, 2017108511]
[4]   Bandgap imaging in Cu(In,Ga)Se2 photovoltaic modules by electroluminescence [J].
Bokalic, Matevz ;
Pieters, Bart E. ;
Gerber, Andreas ;
Rau, Uwe ;
Topic, Marko .
PROGRESS IN PHOTOVOLTAICS, 2017, 25 (02) :184-191
[5]  
Bokalic M, 2014, 2014 IEEE 40TH PHOTOVOLTAIC SPECIALIST CONFERENCE (PVSC), P3167, DOI 10.1109/PVSC.2014.6925607
[6]   Progress in thin film CIGS photovoltaics - Research and development, manufacturing, and applications [J].
Feurer, Thomas ;
Reinhard, Patrick ;
Avancini, Enrico ;
Bissig, Benjamin ;
Lockinger, Johannes ;
Fuchs, Peter ;
Carron, Romain ;
Weiss, Thomas Paul ;
Perrenoud, Julian ;
Stutterheim, Stephan ;
Buecheler, Stephan ;
Tiwari, Ayodhya N. .
PROGRESS IN PHOTOVOLTAICS, 2017, 25 (07) :645-667
[7]   Band-gap grading in Cu(In,Ga)Se2 solar cells [J].
Gloeckler, M ;
Sites, JR .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2005, 66 (11) :1891-1894
[8]   Effects of heavy alkali elementsin Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6% [J].
Jackson, Philip ;
Wuerz, Roland ;
Hariskos, Dimitrios ;
Lotter, Erwin ;
Witte, Wolfram ;
Powalla, Michael .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2016, 10 (08) :583-586
[9]   Cu(In,Ga)(Se,S)2 solar cell research in Solar Frontier: Progress and current status [J].
Kato, Takuya .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2017, 56 (04)
[10]   Efficiency limits for single junction and tandem solar cells [J].
Meillaud, F. ;
Shah, A. ;
Droz, C. ;
Vallat-Sauvain, E. ;
Miazza, C. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2006, 90 (18-19) :2952-2959