Complexity and approximation of the connected set-cover problem

被引:6
作者
Zhang, Wei [1 ]
Wu, Weili [2 ]
Lee, Wonjun [3 ]
Du, Ding-Zhu [2 ,4 ]
机构
[1] Xi An Jiao Tong Univ, Dept Appl Math, Xian 710049, Shaanxi, Peoples R China
[2] Univ Texas Dallas, Dept Comp Sci, Richardson, TX 75083 USA
[3] Korea Univ, Dept Comp Sci & Engn, Seoul 136713, South Korea
[4] Korea Univ, WCU FNOT Res Ctr, Seoul, South Korea
基金
美国国家科学基金会;
关键词
Connected set-cover; Computational complexity; Approximation algorithms;
D O I
10.1007/s10898-011-9726-x
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we study the computational complexity and approximation complexity of the connected set-cover problem. We derive necessary and sufficient conditions for the connected set-cover problem to have a polynomial-time algorithm. We also present a sufficient condition for the existence of a (1 + ln delta)-approximation. In addition, one such (1 + ln delta)-approximation algorithm for this problem is proposed. Furthermore, it is proved that there is no polynomial-time -approximation for any for the connected set-cover problem on general graphs, unless NP has an quasi-polynomial Las-Vegas algorithm.
引用
收藏
页码:563 / 572
页数:10
相关论文
共 5 条
[1]  
[Anonymous], P AAIM
[2]  
Chvatal V, 1979, MATH OPER RES, DOI [10.2307/3689577, DOI 10.2307/3689577]
[3]  
Feige U, 1998, P ACM STOC, DOI [10.1145/285055.285059, DOI 10.1145/285055.285059]
[4]  
Gupta H., 2003, P ACM MOBIHOC, DOI [10.1145/778415.778438, DOI 10.1145/778415.778438]
[5]  
Halperin E., 2003, P ACM STOC, DOI [10.1145/780542.780628, DOI 10.1145/780542.780628]