High-Performance Flexible Freestanding Anode with Hierarchical 3D Carbon-Networks/Fe7S8/Graphene for Applicable Sodium-Ion Batteries

被引:312
作者
Chen, Weihua [1 ,2 ]
Zhang, Xixue [1 ]
Mi, Liwei [3 ]
Liu, Chuntai [2 ]
Zhang, Jianmin [1 ]
Cui, Shizhong [3 ]
Feng, Xiangming [1 ]
Cao, Yuliang [4 ]
Shen, Changyu [2 ]
机构
[1] Zhengzhou Univ, Coll Chem & Mol Engn, Zhengzhou 450001, Henan, Peoples R China
[2] Zhengzhou Univ, Natl Engn & Res Ctr Adv Polymer Proc Technol, Zhengzhou 450001, Henan, Peoples R China
[3] Zhongyuan Univ Technol, Ctr Adv Mat Res, Zhengzhou 450007, Henan, Peoples R China
[4] Wuhan Univ, Coll Chem & Mol Sci, Hubei Key Lab Electrochem Power Sources, Wuhan 430072, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
anodes; areal capacity; Fe7S8; flexible freestanding anodes; sodium-ion batteries; LITHIUM; GRAPHENE; CAPACITY; STORAGE; NANOSTRUCTURES; NANOCRYSTALS; CAPABILITY; NANOSHEETS; STABILITY; EVOLUTION;
D O I
10.1002/adma.201806664
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Sodium-ion batteries (SIBs) have gained tremendous interest for grid scale energy storage system and power energy batteries. However, the current researches of anode for SIBs still face the critical issues of low areal capacity, limited cycle life, and low initial coulombic efficiency for practical application perspective. To solve this issue, a kind of hierarchical 3D carbon-networks/Fe7S8/graphene (CFG) is designed and synthesized as freestanding anode, which is constructed with Fe7S8 microparticles well-welded on 3D-crosslinked carbon-networks and embedded in highly conductive graphene film, via a facile and scalable synthetic method. The as-prepared freestanding electrode CFG represents high areal capacity (2.12 mAh cm(-2) at 0.25 mA cm(-2)) and excellent cycle stability of 5000 cycles (0.0095% capacity decay per cycle). The assembled all-flexible sodium-ion battery delivers remarkable performance (high areal capacity of 1.42 mAh cm(-2) at 0.3 mA cm(-2) and superior energy density of 144 Wh kg(-1)), which are very close to the requirement of practical application. This work not only enlightens the material design and electrode engineering, but also provides a new kind of freestanding high energy density anode with great potential application prospective for SIBs.
引用
收藏
页数:9
相关论文
共 61 条
[1]   Sodium-Ion Battery Materials and Electrochemical Properties Reviewed [J].
Chayambuka, Kudakwashe ;
Mulder, Grietus ;
Danilov, Dmitri L. ;
Notten, Peter H. L. .
ADVANCED ENERGY MATERIALS, 2018, 8 (16)
[2]   Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling [J].
Chen, Chaoji ;
Wen, Yanwei ;
Hu, Xianluo ;
Ji, Xiulei ;
Yan, Mengyu ;
Mai, Liqiang ;
Hu, Pei ;
Shan, Bin ;
Huang, Yunhui .
NATURE COMMUNICATIONS, 2015, 6
[3]   Pyrite FeS2 microspheres anchoring on reduced graphene oxide aerogel as an enhanced electrode material for sodium-ion batteries [J].
Chen, Weihua ;
Qi, Shihan ;
Guan, Linquan ;
Liu, Chuntai ;
Cui, Shizhong ;
Shen, Changyu ;
Mi, Liwei .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (11) :5332-5341
[4]   High-rate FeS2/CNT neural network nanostructure composite anodes for stable, high-capacity sodium-ion batteries [J].
Chen, Yuanyuan ;
Hu, Xudong ;
Evanko, Brian ;
Sun, Xiaohong ;
Li, Xin ;
Hou, Tianyi ;
Cai, Shu ;
Zheng, Chunming ;
Hu, Wenbin ;
Stucky, Galen D. .
NANO ENERGY, 2018, 46 :117-127
[5]   Extremely Small Pyrrhotite Fe7S8 Nanocrystals with Simultaneous Carbon-Encapsulation for High-Performance Na-Ion Batteries [J].
Choi, Min-Jae ;
Kim, Jongsoon ;
Yoo, Jung-Keun ;
Yim, Soonmin ;
Jeon, Jaebeom ;
Jung, Yeon Sik .
SMALL, 2018, 14 (02)
[6]   Rational Synthesis and Assembly of Ni3S4 Nanorods for Enhanced Electrochemical Sodium-Ion Storage [J].
Deng, Jun ;
Gong, Qiufang ;
Ye, Hualin ;
Feng, Kun ;
Zhou, Junhua ;
Zha, Chenyang ;
Wu, Jinghua ;
Chen, Junmei ;
Zhong, Jun ;
Li, Yanguang .
ACS NANO, 2018, 12 (02) :1829-1836
[7]   Ultrafine Iron Pyrite (FeS2) Nanocrystals Improve Sodium-Sulfur and Lithium-Sulfur Conversion Reactions for Efficient Batteries [J].
Douglas, Anna ;
Carter, Rachel ;
Oakes, Landon ;
Share, Keith ;
Cohn, Adam P. ;
Pint, Cary L. .
ACS NANO, 2015, 9 (11) :11156-11165
[8]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[9]   Optimizing Areal Capacities through Understanding the Limitations of Lithium-Ion Electrodes [J].
Gallagher, Kevin G. ;
Trask, Stephen E. ;
Bauer, Christoph ;
Woehrle, Thomas ;
Lux, Simon F. ;
Tschech, Matthias ;
Lamp, Peter ;
Polzin, Bryant J. ;
Ha, Seungbum ;
Long, Brandon ;
Wu, Qingliu ;
Lu, Wenquan ;
Dees, Dennis W. ;
Jansen, Andrew N. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (02) :A138-A149
[10]   Anions induced evolution of Co3X4 (X = O, S, Se) as sodium-ion anodes: The influences of electronic structure, morphology, electrochemical property [J].
Ge, Peng ;
Zhang, Chenyang ;
Hou, Hongshuai ;
Wu, Buke ;
Zhou, Liang ;
Li, Sijie ;
Wu, Tianjing ;
Hu, Jiugang ;
Mai, Liqiang ;
Ji, Xiaobo .
NANO ENERGY, 2018, 48 :617-629