Classifier Concept Drift Detection and the Illusion of Progress

被引:25
作者
Bifet, Albert [1 ]
机构
[1] Univ Paris Saclay, LTCI, Telecom ParisTech, F-75013 Paris, France
来源
ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2017, PT II | 2017年 / 10246卷
关键词
Concept drift; Data streams; Incremental; Classification; Evolving; Online;
D O I
10.1007/978-3-319-59060-8_64
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
When a new concept drift detection method is proposed, a common way to show the benefits of the new method, is to use a classifier to perform an evaluation where each time the new algorithm detects change, the current classifier is replaced by a new one. Accuracy in this setting is considered a good measure of the quality of the change detector. In this paper we claim that this is not a good evaluation methodology and we show how a non-change detector can improve the accuracy of the classifier in this setting. We claim that this is due to the existence of a temporal dependence on the data and we propose not to evaluate concept drift detectors using only classifiers.
引用
收藏
页码:715 / 725
页数:11
相关论文
共 22 条
  • [1] [Anonymous], 2011, J MACHINE LEARNING R
  • [2] [Anonymous], CORR
  • [3] [Anonymous], 2006, 4 ECML PKDD INT WORK
  • [4] Basseville M, 1993, DETECTION ABRUPT CHA
  • [5] Bifet Albert, 2013, Machine Learning and Knowledge Discovery in Databases. European Conference, ECML PKDD 2013. Proceedings: LNCS 8188, P465, DOI 10.1007/978-3-642-40988-2_30
  • [6] Bifet A., 2007, SIAM INT C DATA MINI
  • [7] Bifet A, 2013, LECT NOTES COMPUT SC, V8207, P92, DOI 10.1007/978-3-642-41398-8_9
  • [8] Bifet A, 2010, J MACH LEARN RES, V11, P1601
  • [9] Bifet A, 2009, LECT NOTES COMPUT SC, V5772, P249, DOI 10.1007/978-3-642-03915-7_22
  • [10] Bifet A, 2009, KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P139