Error analysis of fully discrete mixed finite element data assimilation schemes for the Navier-Stokes equations

被引:17
作者
Garcia-Archilla, Bosco [1 ]
Novo, Julia [2 ]
机构
[1] Univ Seville, Dept Matemat Aplicada 2, Seville, Spain
[2] Univ Autonoma Madrid, Dept Matemat, Madrid, Spain
关键词
Data assimilation; Downscaling; Navier-Stokes equations; Iniform-in-time error estimates; Fully discrete schemes; Mixed finite elements methods; 35Q30; 65M12; 65M15; 65M20; 65M60; 65M70; 76B75; GRAD-DIV STABILIZATION; 2D BENARD CONVECTION; GALERKIN METHOD; INCOMPRESSIBLE-FLOW; PROJECTION METHODS; STABILITY;
D O I
10.1007/s10444-020-09806-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider fully discrete approximations with inf-sup stable mixed finite element methods in space to approximate the Navier-Stokes equations. A continuous downscaling data assimilation algorithm is analyzed in which measurements on a coarse scale are given represented by different types of interpolation operators. For the time discretization an implicit Euler scheme, an implicit and a semi-implicit second-order backward differentiation formula are considered. Uniform-in-time error estimates are obtained for all the methods for the error between the fully discrete approximation and the reference solution corresponding to the measurements. For the spatial discretization we consider both the Galerkin method and the Galerkin method with grad-div stabilization. For the last scheme error bounds in which the constants do not depend on inverse powers of the viscosity are obtained.
引用
收藏
页数:33
相关论文
共 51 条
  • [1] Adams R.A., 2003, PURE APPL MATH, V140
  • [2] Agmon S., 2010, Lectures on Elliptic Boundary Value Problems
  • [3] Downscaling the 2D Benard convection equations using continuous data assimilation
    Altaf, M. U.
    Titi, E. S.
    Gebrael, T.
    Knio, O. M.
    Zhao, L.
    McCabe, M. F.
    Hoteit, I.
    [J]. COMPUTATIONAL GEOSCIENCES, 2017, 21 (03) : 393 - 410
  • [4] [Anonymous], 1988, Chicago Lectures in Mathematics
  • [5] [Anonymous], 2010, SPRINGER SERIES COMP
  • [6] [Anonymous], 1991, ATMOSPHERIC DATA ANA
  • [7] Local Projection FEM Stabilization for the Time-Dependent Incompressible Navier-Stokes Problem
    Arndt, Daniel
    Dallmann, Helene
    Lube, Gert
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2015, 31 (04) : 1224 - 1250
  • [8] Asch M., 2016, Data Assimilation
  • [9] The postprocessed mixed finite-element method for the Navier-Stokes equations
    Ayuso, B
    García-Archilla, B
    Novo, J
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (03) : 1091 - 1111
  • [10] Continuous Data Assimilation Using General Interpolant Observables
    Azouani, Abderrahim
    Olson, Eric
    Titi, Edriss S.
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2014, 24 (02) : 277 - 304